期刊文献+

光伏发电系统中一种蓄电池状态估计的新方法 被引量:1

The Sort of Novel Method of State Estimate for Battery in Photovoltaic Power Generation System
下载PDF
导出
摘要 光伏发电系统中蓄电池状态是确定仅对本地负载供电或将电能上传电网的重要依据。为了改善光伏发电系统中蓄电池状态估计存在的精度低,跟踪速度慢,易积累误差和易发散等问题,提出了一种改进的Sigma-point卡尔曼滤波的状态估计方法。该方法基于Sigma-point卡尔曼滤波,在其滤波过程中引入渐消因子,对非当前滤波值进行渐消,以修正获取的当前滤波数据值,使之保持滤波的实时性。仿真对比研究显示,该方法的估计精度更高,跟踪速度更快,波形更平稳,其对蓄电池的荷电状态(SOC)和开路电压估计的相对误差最大值分别为3.256%和4.610%。仿真研究结果表明,所提出的方法应用于蓄电池状态的估计是可行的。 State estimate for battery in photovoltaic power generation system is an important basis that determines whether the power is supplied only for local load or uploading to the grid. In order to overcome the puzzles of being low in accuracy, slow in track speed, easy to accumulating error and divergence, the paper proposed a sort of state estimation method based on the improved Sigma-point Kalman filter. Based on principle of the Sigma-point Kalman filter, it introduced diminishing factor to fade the non-current filtering value, and modifying the current filtering value in filtering process for keeping filtering real-time. The simulation comparative experiments showed that the method would be higher in estimate accuracy, faster in track speed, more stable in waveform, and the relative errors of maximum estimation in SOC and open-circuit voltage would be respectively 3.256% and 4.610%. Simulation researches show that the proposed state estimate method is reasonable and feasible.
作者 翁珏
出处 《电气技术》 2015年第6期67-72,共6页 Electrical Engineering
关键词 光伏发电系统 状态估计 卡尔曼滤波 渐消因子 photovoltaic power generation system state estimate Kalman filtering diminishing factor
  • 相关文献

参考文献8

二级参考文献39

  • 1夏加宽,徐纯科,黄伟.三相PWM整流器的小信号建模及其双闭环控制[J].电气技术,2009,10(11):41-44. 被引量:3
  • 2王治国,高玉峰,杨万利.铅酸蓄电池等效电路模型研究[J].装甲兵工程学院学报,2003,17(1):78-81. 被引量:29
  • 3魏学哲,邹广楠,孙泽昌.燃料电池汽车中电池建模及其参数估计[J].电源技术,2004,28(10):605-608. 被引量:19
  • 4李时杰,李耀华,陈睿.背靠背变流系统中优化前馈控制策略的研究[J].中国电机工程学报,2006,26(22):74-79. 被引量:59
  • 5Aylor J H, Thieme A, Johnson B W. A battery state of charge indicator for electric wheelchairs[J]. IEEE Transactions on Industrial Electronics, 1992, 39(10): 398-409.
  • 6Tsutomu Y, Kazuaki S, Ken-Ichiro M. Estimation of the residual capacity of sealed lead-acid batteries by neural network[C]. Proceedinds of the 20th International Telecommunications Energy Conference, 1998:210-214.
  • 7Gregory L P. Kalman-filter SOC estimation for LIB cells[C]. Proceedings of the 19th International Electric Vehicle Symposium, 2002: 527-538.
  • 8Gregory L Plett. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Partl. Background [J]. Journal of Power Sources, 2004,134(2): 252-261.
  • 9ThermoAnalytics Inc.. Battery modeling for HEV simulation by ThermoAnalytics Inc.http://www.thermoanalytics.com/suplaort/publications/battervmod elsdoc.html.
  • 10Rudolph van der Merwe, Eric Wan Kalman filters for probabilistic inference Sigma-point in dynamic state-space models[C]. Proceedings of the Workshop on Advances in Machine Learning, 2003: 1-27.

共引文献119

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部