期刊文献+

s-对数凸函数的Hermite-Hadamard型积分不等式 被引量:11

Some Integral Inequalities of Hermite-Hadamard Type for s-Logarithmically Convex Functions
下载PDF
导出
摘要 该文定义了"s-对数凸函数"的概念,并给出了可微s-对数凸函数的若干个HermiteHadamard型积分不等式,作为应用给出了平均数的几个不等式. In the paper, we introduce the notion "s-logarithmically convex function", establish some new integral inequalities of Hermite-Hadamard type for functions the power of the absolute of whose first derivative is s-logarithmically convex, and apply these newly obtained inequalities to means.
作者 席博彦 祁锋
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第3期515-524,共10页 Acta Mathematica Scientia
基金 国家自然科学基金(11361038) 内蒙古自治区高等学校科学研究项目(NJZY14191)资助
关键词 积分不等式 积分等式 Hermite-Hadamard积分不等式 凸函数 s-对数凸函数 Integral inequality Integral identity Hermite-Hadamard's integral inequality Convex function s-Logarithmically convex function
  • 相关文献

参考文献3

二级参考文献20

  • 1Pearce C E M, PeSari5 J. Inequalities for differentiable mappings with application to special means and quadrature formula. Appl Math Lett, 2000, 13:51 55.
  • 2Yang G S, Hwang D Y, Tseng K L. Some inequalities for differentiable convex and concave mappings. Comp Math Appl, 2004, 47:207-216.
  • 3Alomari M, Darus M, Kirmaci U S. Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comp Math Appl, 2010, 59:225-232.
  • 4Alomari M, Darus M. Some Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA, 2010, 13(2) Article No 3.
  • 5Alomari M, Darus M. On some inequalities Simpson-type via quasi-convex functions with applications. Trans J Math Mech, 2010, (2): 15-24.
  • 6Alomaxi M, Daxus M. Ostrowski type inequalities for functions whose derivatives axe s-convex in the second sense. Appl Math Lett, 2010, (23): 1071-1076.
  • 7Alomari M, Darus M. On the Hadtamard's inequality for log-convex functions on the coordinates. J Ineq Appl, 2009, 2009: Article ID 283147.
  • 8Alomari M, Darus M. Fejr inequality br double integrals. Fa~ta Universitatis ~NIS) Ser Math Inform, 2009, (24): 15 28.
  • 9Alomari M, Darus M. On co-ordinated s-convex functions. Inter Math Forum, 2008, 3(40): 1977-1989.
  • 10Dragomir S S, Fitzpatrick S. The Hadamard's inequality for s-convex functions in the second sense. Demon- stratio Math, 1999, 32(4): 687-696.

共引文献11

同被引文献40

引证文献11

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部