期刊文献+

减振橡胶结构的概率-区间混合动态可靠度分析

Dynamic reliability analysis of shock absorption rubber structure with probability-interval mixed uncertainty
原文传递
导出
摘要 针对减振橡胶结构的可靠度进行分析,改进了一种概率-区间混合动态可靠度分析模型,并给出了可靠度的简化计算方法。以循环载荷作用下的炭黑填充橡胶为例,首先考虑炭黑填充橡胶的粘滞特性推导了循环载荷作用下此橡胶圆柱体的温度场,采用过热失效准则构建出其极限状态方程,然后采用概率-区间混合模型描述结构不确定参数,同时考虑材料耐热性能的衰减,建立了橡胶结构动态可靠度分析模型,并将其化简为静态模型。通过高效序列迭代格式得到了橡胶结构可靠度上下界随时间增大而减小的时变规律以及可靠度指标随动态应变幅值增大而减小的变化规律。 Reliability is an important indicator of structures safety evaluation. For shock absorption rubber, a model of probability-interval mixed dynamic reliability is modified, and a simplified reliability calculation method is presented. Firstly, the temperature field of a carbon-black filled rubber cylinder under cyclic loading is derived by taking into account the viscoelastic property of the material. Then, a thermal failure criterion, considering the reduction of the material heat resistance, is used to describe the limit state equation, and the uncertainty of the material parameters are given by the probability-interval mixed model. Finally, the dynamic limit state function is simplified into a time-independent one, an efficient scheme of sequential iteration is used to solve the two-layer nesting optimization and the upper and lower bound of the dynamic reliability for rubber cylinder is obtained. It is shown that the upper and lower bound of the reliability index decreases with time, furthermore, the reliability index decreases with the increase of dynamic strain amplitude.
出处 《应用力学学报》 CAS CSCD 北大核心 2015年第2期197-204,349,共8页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(11172256) 湖南省科技计划项目(2014TT2031) 湖南省教育厅重点项目(13A098) 清华大学汽车安全与节能国家重点实验室开放课题(KF14012)
关键词 橡胶结构 随机参数 区间不定性 动态可靠性 炭黑填充橡胶 rubber structure,random parameter,interval uncertainty,dynamic reliability,carbon-black filled rubber.
  • 相关文献

参考文献26

  • 1Rackwitz R,Fiessler B.Structural reliability under combined random load sequences[J].Computers & Structures,1978,9(5):489-494.
  • 2Hohenbichler M,Rackwitz R.Non-normal dependent vectors in structural safety[J].Journal of Engineering Mechanics,1981,107(6):1227-1238.
  • 3Breitung K W.Asymptotic approximation for multinormal integrals[J].Journal of Engineering Mechanics,1984,110(3):357-366.
  • 4Breitung K W.Asymptotic approximations for probability integrals[M].Berlin:Springer-Verlag,1994.
  • 5Polidori D C,Beck J L,Papadimitriou C.New approximations for reliability integrals[J].Journal of Engineering Mechanics,1999,125(4):466-475.
  • 6Thoft-Christensen P,Murotsu Y.Application of structural systems reliability theory[M].Berlin:Springer-Verlag,1986.
  • 7Ang A H S,Tang W H.Probability concepts in engineering planning and design,Volume II:decision,risk and reliability[M].New York:John Wiley & Sons,1984.
  • 8Andrieu-Renaud C,Sudret B,Lemaire M.The PHI2 method:a way to compute time-variant reliability[J].Reliability Engineering & System Safety,2004,84(1):75-86.
  • 9黄新萍,姜潮,韩旭.针对非线性极限状态方程的时变可靠度分析[J].力学学报,2014,46(2):264-272. 被引量:10
  • 10Der Kiureghian A,Li C C.Nonlinear random vibration analysis through optimization[C]//Proceedings of the Seventh IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems.Frangopol D M,Corotis R B,Rackwitz R.Reliability and optimization of structural systems.UK:Pergamon Press,1997:197-206.

二级参考文献132

共引文献247

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部