期刊文献+

一种基于两步降维和并行特征融合的表情识别方法 被引量:6

Facial expression recognition method based on two-steps dimensionality reduction and parallel feature fusion
原文传递
导出
摘要 在采用特征融合方法进行人脸表情识别时,通常会产生高维特征问题。针对这一问题,提出一种基于两步降维和并行特征融合的表情识别新方法。利用主成分分析法(principal component analysis,PCA)分别对待融合的两类特征在实数域进行第一次降维,将降维后的特征进行并行特征融合;为了解决在并行融合过程中产生的高维复特征问题,提出一种基于酉空间的混合判别分析方法(unitary-space hybrid discriminant analysis,unitary-space HDA)作为酉空间的特征降维方法。该方法是实数域混合判别分析法在酉空间内的扩展,并兼顾了复特征数据的类间判别信息及全局描述信息。对局部二值模式(local binary pattern,LBP)和Gabor小波特征进行融合,并在JAFFE和CK+表情数据集上开展对比实验。实验结果表明,该方法具有较好的高维复特征数据降维能力,并且有效提高了表情识别率。 When feature fusion method is used in emotion recognition, the problem of high dimensional features always ex- ists. In order to solve this problem, a novel facial expression recognition method is proposed in this paper, which is based on two-steps dimensionality reduction and parallel feature fusion. First of all, the PCA method is taken as the first-step fea- ture dimensionality reduction method for the two different feature vectors respectively in the real space. Afterward, the re- duced features are parallel fused in the unitary space. On the other hand, in order to solve the problem of high dimensional features which are generated in the process of parallel feature fusion, the unitary-space HDA method is proposed and is taken as the second-step feature dimensionality reduction method in the unitary space. It is the extension of the hybrid dis- criminant analysis method from the real space to the unitary space. Furthermore, this method combines both the complex between-class discriminant information and the complex global descriptive information of the parallel combined features. Several experiments are taken on the JAFFE and CK + data sets, where local binary pattern features and Gabor wavelet fea- tures are fused. The experimental results indicate that the proposed method is capable of reducing high dimensional complex feature, and it also achieves higher recognition rate than the traditional feature fusion methods.
作者 杨勇 蔡舒博
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2015年第3期377-385,共9页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 韩国科学与信息科技未来规划部2013年ICT研发项目(10039149) 重庆市自然科学基金(CSTC 2007BB2445)~~
关键词 人脸表情识别 两步降维 并行特征融合 主成分分析法 酉空间混合判别分析法 facial expression recognition two-steps dimensionality reduction parallel feature fusion PCA unitary-space HDA
  • 相关文献

参考文献27

  • 1MEHRABIAN A. Silent Messages : Implicit communica-tion of emotions and attitudes[ M] . Belmont, CA: Wad-sworth, 1981: 196-200.
  • 2PICARD R W. Affective computing: challenges[ J] . In-ternational Journal of Human-Computer Studies,2003,59(1) : 55-64.
  • 3EKMAN P, FRIESEN W V. Constants across cultures inthe face and emotion [ J]. Journal of personality and so-cial psychology, 1971 , 17(2) : 124.
  • 4OJALA T,PIETIK A M,MAenpAA T. Multiresolutiongray-scale and rotation invariant texture classification withlocal binary patterns [ J] . IEEE Transactions on PatternAnalysis and Machine Intelligence, 2002, 24(7) : 971-987.
  • 5GAO Tao, FENG X L, LU He, et al. A novel face fea-ture descriptor using adaptively weighted extended LBPpyramid [ J ]. Optik-Intemational Journal for Light and E~lectron Optics, 2013, 124(23) : 6286-6291.
  • 6MAJUMDER A, BEHERA L,SUBRAMANIAN V K.Facial expression recognition with regional features usinglocal binary patterns[ C ]//The 15th International Confer-ence of Computer Analysis of Image and Patterns. York,UK: [s. 1. ],2013:556-563.
  • 7VERM A R, DABBAGH M Y. Fast facial expression rec-ognition based on local binary patterns [ C ] //The 26thAnnual IEEE Canadian Conference of Electrical AndComputer Engineering. Regina, CA : IEEE Press, 2013 :M.
  • 8LIU Chengjun,WECHSLER H. Gabor feature basedclassification using the enhanced fisher linear discriminantmodel for face recognition.J] . IEEE Transactions on Im-age Processing, 2002 , 11(4) : 467-476.
  • 9LINGZhigang, LU Xiao, Wang Yaonan, et al. Localsparse represenation for driver drowsiness expression rec-ognition [C ] //The Chinese Automation Congress. Chang-sha, CN:[s. 1. ], 2013: 733-737.
  • 10RUAN Jinxin, YIN Junxun, CHEN Qiang, et al. FacialExpression Recognition Based on Gabor Wavelet Trans-form and Relevance Vector Machine[ J] . Journal of Infor-mation & Computational Science, 2014, 11 (1 ) , 29 -302.

二级参考文献28

共引文献42

同被引文献32

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部