期刊文献+

聚龙一号装置磁绝缘传输线的电流损失特性 被引量:10

Current Loss Properties of the Magnetically Insulated Transmission Line in the PTS Facility
原文传递
导出
摘要 聚龙一号装置是我国自主研制的首台多路并联超高功率脉冲装置,可根据物理实验的需要工作在不同的脉冲输出模式,负载上获得的电流脉冲前沿75~600 ns、峰值5~10 MA可调。4层圆盘锥型磁绝缘传输线是聚龙一号装置实现超高功率脉冲向负载传输的关键部件,磁绝缘传输线中产生的电流损失会对负载电流波形产生影响并使能量传输效率降低。为此,针对聚龙一号装置,通过全电路计算,在长短两种脉冲输出模式下,研究了磁绝缘传输线的电流损失特性。研究表明:对于电流前沿较快的Z-pinch实验类型,磁绝缘形成过程中外磁绝缘线的损失电流总和约为940 k A,磁绝缘形成后在柱孔汇流区的损失为330~743 k A;而对于前沿较慢的准等熵压缩实验类型,对应的损失分别为223 k A和77~174 k A。 The Primary Test Stand (PTS) is the first multi-modular high power facility in China, which can generate cur- rent pulse with rise time of 75-600 ns and amplitude of 5~10 MA, depending on different experimental setups. The four-level conical magnetically insulated transmission line (MITL), as a key component for the PTS's pulse transmission, is decisive to the whole facility. Current loss occurring in MITL will change the waveform of load current and decrease the energy transmission efficiency. Hence, we studied the current loss of the MITL in PTS using full circuit simulation for both short and long current rise time. Results indicate that, in the Z-pinch experiment with fast current rising, the total loss in outer MITL during the establishment of magnetic insulation is about 940 kA and the loss in Double Post Hole Convo- lute (DPHC) after the establishment of magnetic insulation is 330-743 kA. For the Isentropic Compression Experiment (ICE), in which the current rises slower, the corresponding losses are 223 kA and 77-174 kA, respectively.
出处 《高电压技术》 EI CAS CSCD 北大核心 2015年第6期1844-1851,共8页 High Voltage Engineering
基金 国家自然科学基金(51407171) 中国工程物理研究院科学技术发展基金(2012A0402017)~~
关键词 聚龙一号装置 磁绝缘传输线 电流损失 全电路计算 Z-PINCH 磁驱动负载 PTS facility magnetically insulated transmission line current loss full circuit simulation Z-pinch mag- netically driven load
  • 相关文献

参考文献22

  • 1Ronald C D. Frontiers in high energy density physics[R]. Washington D C, USA: National Research Council of The National Academies of USA, 2002.
  • 2Feder T. Pulsed-power machine studies weapons, simulates stars[J]. Physics Today, 2014, 67(6): 24-26.
  • 3Matzen M K. Z pinches as intense X-ray sources for high-energy density physics applications[J]. Physics of Plasmas, 1997, 4(5): 1519.
  • 4Matzen M K, Sweeney M A, Adams R G,et al. Pulsed-power-driven high energy density physics and inertial confinement fusion re- search[J]. Physics of Plasmas, 2005, 12(5): 055503.
  • 5Creedon J M. Magnetic cutoff in high-current diodes[J]. Journal of Applied Physics, 1977, 48(3): 1070-1977.
  • 6Di Capua M S, Pellinen D G Propagation of power pulses in magneti- cally insulated vacuum transmission lines[J]. Journal of Applied Physics, 1979, 50(5): 3713-3720.
  • 7Stygar W A, Corcoran P A, Ives H C, et al. 55-TW magnetically insu- lated transmission-line system: design, simulations, and performance[J]. Physical Review Special Topics - Accelerators and Beams, 2009,12(12): 120401.
  • 8Song S Y, Guan Y C, Zou W K, et al. Circuit modeling for PTS's magnetically insulated transmission lines[C]//Proceedings of the 19th IEEE Pulsed Power and 40th Plasma seience Conference. San Fran- cisco, USA: IEEE, 2013: 1-6.
  • 9Bloomquist D D, Stinnett R W, McDaniel D H, et al. SATURN, a large area x-ray simulation accelerator[C]//6th IEEE International Pulsed Power Conference. [S.1.]: IEEE, 1987: 310.
  • 10Mendel C W, Pointon T D, Savage M E, et al. Losses at magnetic nulls in pulsed-power transmission line systems[J]. Physics of Plasmas, 2006, 13(4): 043105.

二级参考文献14

  • 1Turman B N, Moore B S, Seamen J F, et al. 1983, Development tests of a 6 MV multistage gas switch for PBFA II. Proc. of 4th IEEE Pulsed Power Conf. Sandia National Laboratories and Naval Surface Weapons Center, Albuquerque, New Mexico, USA. p.617
  • 2Denison G J, Alexander 1989, Performance of the J A, Corley J P, et al. HEMEMES-Ⅲ laser triggered gas switches. Proc. of 7th IEEE Pulsed Power Conf. Physics International Company and Maxwell Laboratories, Monterey, California, USA. p.579
  • 3Spielman R B, Stygar W A, Seaman J F. 1997, Pulsed power performance of PBFA-Z. 11^th IEEE Int. Pulsed Power Conf. Naval Research Laboratories, Baltimore, Maryland, USA, p.709
  • 4Li H T, Ding B N, Xie W P, et al. 2003, High Power Laser and Particle Beam, 15:708 (in Chinese)
  • 5Li H T. 2003, Study on the Closing Switch Techniques of Z-pinch Accelerator. [PH.D. Thesis]. Mianyang: China Academy of Engineering Physics (CAEP) (in Chinese)
  • 6Li H T, Ding B N, Xie W P, et al. 2004, High Power Laser and Particle Beam, 16:1054 (in Chinese)
  • 7Li H T, Ding B N, Feng S P, et al. 2006. High Power Laser and Particle Beam, 18:459 (in Chinese)
  • 8Martin T H, Guenther A H, Kristiansen M. 1996, J. C. Martin on Pulsed Power. New York: Plenum Press
  • 9Hou L J, Wang Y N, Miskvic Z L. 2004, Plasma Sci. Technol., 6:2404
  • 10Xiong Y, Ding Y K, Zheng Z J, et al. 2004, Plasma Sci. Technol., 6:2346

共引文献1

同被引文献42

引证文献10

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部