期刊文献+

基于MapReduce的二分图社团发现

COMMUNITY DETECTION USING BIPARTITE GRAPH BASED ON MAPREDUCE
下载PDF
导出
摘要 社团发现是复杂网络领域的一个重要的研究手段。随着网络数据规模的不断增大,现有算法难以适应较大的数据规模。针对这种情况,提出一种基于MapReduce的二分图社团发现算法。提出的算法可以分为两个阶段,第一个阶段将一个二分图映射为一个同质加权网络。第二个阶段利用并行化的标签传播算法来检测映射后的网络中的社团结构。在人工数据集和现实数据集中进行实验,并将提出的算法与现有的算法进行对比。实验结果表明,所提出的算法能在部分人工网络以及现实数据集中取得很好的效果,并且在算法效率上,比现有算法有很大的提高。 Community detection is an important research means in complex networks area.However,with the growth of networks data scale,current algorithms are hard to fit rather large-scale data.In light of such case,we propose a MapReduce-based bipartite graph community detection algorithm.The proposed algorithm can be divided into two phases.The first phase is to map a bipartite graph onto a homogeneous weighted network.The second phase is to use parallel label propagation algorithm to detect the communities in the networks mapped.Experiments have been made on synthetic datasets and real-world datasets,and the proposed algorithm is compared with existing algorithms as well.Experimental result shows that,the proposed algorithm can get quite good result in some of the synthetic networks and real-world datasets,and has big improvement in algorithm efficiency than current algorithms.
作者 王昊宇 吴斌
出处 《计算机应用与软件》 CSCD 2015年第6期130-135,共6页 Computer Applications and Software
基金 国家重点基础研究发展计划项目(2013CB329603) 国家自然科学基金项目(61074128 71231002)
关键词 社团发现 二分图 MAPREDUCE Community detection Bipartite graph MapReduce
  • 相关文献

参考文献16

  • 1Guimer R,Sales-pardo M,Amaral L A N.Module identification in bipartite and directed networks[J].Physical Review E,2007,76(3):036102.
  • 2刘欣,Tsuyoshi Murata.Detecting Communities in K-Partite K-Uniform (Hyper)Networks[J].Journal of Computer Science & Technology,2011,26(5):778-791. 被引量:3
  • 3Sun Y,Han J,Zhao P,et al.Rankclus:integrating clustering with ranking for heterogeneous information network analysis[C]//Proceedings of the 12th International Conference on Extending Database Technology:Advances in Database Technology,2009.ACM.
  • 4Yang J,Leskovec J.Defining and evaluating network communities based on ground-truth[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.ACM,2012:3.
  • 5Newman M E,Girvan M.Finding and evaluating community structure in networks[J].Physical review E,2004,69(2):026113.
  • 6Zhan W,Zhang Z,Guan J,et al.Evolutionary method for finding communities in bipartite networks[J].Physical Review E,2011,83(6):066120.
  • 7Mao C.A Heuristic Algorithm for Bipartite Community Detection in Social Networks[J].Journal of Software,2012,7(1):204-211.
  • 8Dormann C F,Strauss R.Detecting modules in quantitative bipartite networks:the Qua Bi Mo algorithm[J].ar Xiv preprint ar Xiv:13043218,2013.
  • 9Souam FA,Telhadj A,Baba-ali R.Dual modularity optimization for detecting overlapping communities in bipartite networks[J].Knowledge and Information Systems,2014,40(2):455-488.
  • 10Zhang Y,Wang J,Wang Y,et al.Parallel community detection on large networks with propinquity dynamics[C]//Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,2009.ACM.

二级参考文献56

  • 1Zhang X S, Wang R S, Wang Y, Wang J, Qiu Y, Wang L, Chen L. Modularity optimization in community detection of complex networks. Europhys. Lett., 2009, 87(3): 38002.
  • 2Liu X, Murata T. Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A, 2010, 389(7): 1493-1500.
  • 3Gao B, Liu T Y, Zheng X, Cheng Q S, Ma W Y. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In Proc. the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, Aug. 21-24, 2005, pp.41-50.
  • 4Greco G, Guzzo A, Pontieri L. An information-theoretic framework for high-order co-clustering of heterogeneous objects. In Proc. the 15th Italian Symposium on Advanced Database Systems, Torre Canne, Italy, Jun. 17-20, 2007, pp.397-404.
  • 5Long B, Zhang Z F, Wu X Y, Yu P S. Spectral clustering for multi-type relational data. In Proc. the 23rd International Conference on Machine Learning, Pittsburgh, USA, Jun. 25- 29, 2006, pp.585-592.
  • 6Long B, Wu X, Zhang Z, Yu P S. Unsupervised learning on k-partite graphs. In Proc. the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, Aug. 20-23, 2006, pp.317-326.
  • 7Singh A P, Gordon G J. Relational learning via collective matrix factorization. In Proc. the 14th A CM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.650-658, Las Vegas, USA, Aug. 24-27, 2008.
  • 8Singh A P, Gordon C J. A unified view of matrix factorization models. In Proc. the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium, Sept. 15-19, 2008, pp.358-373.
  • 9Cattuto C, Schmitz C, Baldassarri A, Servedio V D P, Loreto V, Hotho A, Grahl M, Stumme C. Network properties of folk-sonomies. AI Communications, 2007, 20(4): 245-262.
  • 10Halpin H, Robu V, Shepherd H. The complex dynamics of collaborative tagging. In Proc. the 16th International Conference on World Wide Web, Banff, Canada, May 8-12, 2007, pp.211-220.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部