期刊文献+

基于级联模型的输变电设备状态图像分类方法 被引量:1

A cascade-based classification method for the images of power transmission and transformation equipment
下载PDF
导出
摘要 对采集到的输变电设备状态图像进行智能化分析是一种实时有效的设备状态监测方式。传统机器学习算法在处理电力设备图像分类问题时,由于不考虑代价敏感和类别不平衡问题,效率较低。文中针对输变电设备状态图像的特点,提出一种基于级联模型的图像分类方法,并通过实验验证该方法的优越性。 There is a kind of real-time and effective way for equipment monitoring that analyses the images which collected from power transmission and transformation equipment running state. The traditional machine learning algorithm has very low efficiency when it addressing the problem of electric power equipment images classification, because it is not considering cost sensitive and categories imbalances. In this paper,according to the characteristics of the images of power transmission and transformation equipment condition monitoring,it puts forward a method of image classification and the experiment verifies the superiority of the method.
出处 《信息技术》 2015年第6期28-31,共4页 Information Technology
基金 国家电网公司基础前瞻科技项目(XX71-13-001)
关键词 级联模型 状态监测 图像分类 代价敏感 类别不平衡 cascade model condition monitoring image classification cost sensitive categories imbalances
  • 相关文献

参考文献5

二级参考文献135

  • 1张琦,吴斌,王柏.非平衡数据训练方法概述[J].计算机科学,2005,32(10):181-186. 被引量:10
  • 2张维力.红外热像仪在电力工业中应用[J].激光与红外,1996,26(2):105-106. 被引量:12
  • 3韩慧,王路,温明,王文渊.不均衡数据集学习中基于初分类的过抽样算法[J].计算机应用,2006,26(8):1894-1897. 被引量:11
  • 4王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 5JosephC.Giarratano,GaryD.Riley,(印鉴,陈忆群,刘星成译).专家系统原理与编程[M].北京:机械工业出版社.2006.
  • 6DL/T664-2008,带电设备红外诊断应用规范[s].
  • 7Chan P K, Stolfo S J. Toward scalable learning with nonuniform class and cost distributions: A case study in credit card fraud detection[C]// Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining. New York, USA: AAAI Press, 1998:164-168.
  • 8Phua C, Alahakoon D, Lee V. Minority report in fraud detection:Classification of skewed data[J]. SIGKDD Explore, 2004,6 (1) :50-59.
  • 9Sun Aixin, Lira E P, Liu Ying. On strategies for imbalaneed text classification using SVM: A comparative study[J]. Decision Support Systems, 2009,48 : 191-201.
  • 10Turney P D. Learning algorithms for keyphrase extraction[J]. Information Retrieval, 2000,2 (4) : 303-336.

共引文献178

同被引文献14

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部