期刊文献+

基于主成分分析和Softmax回归模型的人脸识别方法 被引量:29

Face recognition method based on principal component analysis and Softmax regression model
下载PDF
导出
摘要 文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网络,将它与Softmax回归模型构成的级联结构看作是2层神经网络,在神经网络的训练过程中,主成分的特征向量可以微调。在不同人脸数据库上的实验表明,相比于传统的只用PCA降维的方法,本文方法可达到较高的识别率。 In this paper, a face recognition method based on the combination of principal component analysis (PCA) and Softmax regression model is introduced. In the method, the image feature is first extracted by PCA, and then the extracted feature is input into the Softmax regression model via nonlinear transform. The PCA is considered as a single-layer neural network, so the combination of PCA and Softmax regression model can be thought as a two-layer neural network. In the training process of neural networks, the feature vectors of the principal component can be fine-tuned. The results of the experiments on the different face databases indicate that the proposed method has good recognition performance and achieves a higher recognition rate than traditional method of PCA dimension reduction.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期759-763,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61105076) 中国博士后科学基金面上资助项目(2012M511402) 安徽省自然科学基金资助项目(1408085MKL76)
关键词 人脸识别 主成分分析 Softmax回归模型 神经网络 face recognition principal component analysis(PCA) Softmax regression model neuralnetwork
  • 相关文献

参考文献15

  • 1李小红,李寅,张静,金建.基于AMD度量和类间模块2DPCA的人脸识别算法[J].合肥工业大学学报(自然科学版),2011,34(7):1015-1018. 被引量:2
  • 2聂会星,梁坤,徐枞巍.基于小波变换和支持向量机的人脸识别研究[J].合肥工业大学学报(自然科学版),2011,34(2):208-211. 被引量:19
  • 3Lee S Y, Ham Y K, Park R H. Recognition of human front faces using knowledge-based feature extraction and neuro- fuzzy algorithm [J]. Pattern Recognition, 1996, 29 ( 11 ) : 1863-1876.
  • 4Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) : 71 - 86.
  • 5Zhang B,Zhang C. Lower hounds estimation to KL trans- form in face representation and recognition[C]//Interna- tional Conference on Machine Learning and Cybernetics. IEEE, 2002 : 1314- 1318.
  • 6张燕昆,刘重庆.基于DCT与LDA的人脸识别方法[M]//生物识别研究新进展.北京:清华大学出版社,2001:55-59.
  • 7Fleming M K, Cottrell G W. Categorization of faces using unsupervised feature extraction[C]//Proeeedings of Inter- national Joint Conferenee on Neural Networks, Vol 2. Par- is: IEEE, 1990:65-70.
  • 8Werbos P J. Beyond regression: new tools for prediction and analysis in the behavioral sciences [D]. Boston Hat- yard University, 1974.
  • 9ORL. The ORL face database at the ATT Research Labo- ratory [DB/OL]. (2006-03-06). http://www, cl. cam. ac. uk/Research/DTG/attarchive/facedatabase, html.
  • 10赵明华,游志胜,吕学斌,穆万军.基于ICA和FLD相结合的人脸识别[J].计算机应用研究,2005,22(8):255-257. 被引量:4

二级参考文献57

  • 1王伟,张佑生,方芳.人脸检测与识别技术综述[J].合肥工业大学学报(自然科学版),2006,29(2):158-163. 被引量:22
  • 2陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 3孙永宣,何柯峰,胡良梅.一种新的基于DCT变换的人脸表征[J].合肥工业大学学报(自然科学版),2006,29(11):1396-1399. 被引量:2
  • 4Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000 (290):2323 - 2326.
  • 5Vapnik V. The nature of statistical learning theory[ M]. New York: Springer, 1995.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letter, 1999,9(3) :293 - 300.
  • 7Blanz V, Sch EL Kopf B, Vapnik V N. Extracting support data for a given task[C]//Proceedings of the 1st International Conference on Knowledge Discovery & Data Mining. Menlo Park, CA: AAAI Press, 1995 : 252 - 257.
  • 8Hsu C W, Lin C J. A comparison of methods for Multi - class support vector machines [ J ]. IEEE Transactions on Neural Networks,2002,13 (2) :415 - 425.
  • 9Smets P,Kennes R.The transferable belief model[J].Artificial Intelligence,1994,66(3):191-234.
  • 10Li B,Liu Y H.When eigenfaces are combined with wavelets[J].Knowledge-based Systems,2002,15(6):343-347.

共引文献71

同被引文献208

引证文献29

二级引证文献375

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部