期刊文献+

基于数据的高炉铁水硅含量预测 被引量:6

Prediction for Blast Furnace Silicon Content in Hot Metal Based on Data
下载PDF
导出
摘要 针对铁水硅含量无法直接在线检测的问题,提出了一种基于优化极限学习机的高炉铁水硅含量数据驱动预测模型,该模型利用差分进化算法的全局寻优能力来优化极限学习机的输入权值和隐元偏差,在此基础上建立了基于差分进化算法优化极限学习机(DE-ELM)的高炉铁水硅含量预测模型。所建模型对高炉炉温的实际调控具有较好的指导意义。 Considering the silicon content of the hot metal cannot be directly detected online, a data-driven prediction method for silicon content in hot metal based on the optimized extreme learning machines is proposed. The connection weights of inputs and biases of hidden nodes of the extreme learning machine are optimized by the differential evolution algorithm because of its global optimization ability. Based on the optimization, the prediction model of the differential evolution extreme learning machine(DE-ELM) is constructed. The proposed model provide a great guiding significance to the temperature control of the blast furnace..
出处 《有色冶金设计与研究》 2015年第3期36-38,41,共4页 Nonferrous Metals Engineering & Research
基金 国家自然科学基金重大项目(61290325) 国家自然科学基金创新研究群体科学基金(61321003)
关键词 硅含量 差分进化 极限学习机 高炉 数据 silicon content differential evolution extreme learning machine blast furnace data
  • 相关文献

参考文献9

  • 1M.Waller and H. Sax' en.Time-varying event-internal trends in predictive modeling methods with applications to ladlewise analyses of hot metal silicon content [J]. Ind. Eng. Chem. Res., 2003,42 ( 1 ) : 85-90.
  • 2T. Bhattacharya.Prcdiction of silicon content in blast furnace hot metal using Partial Least Squares (PI.S)[J].ISIJ Int., 2005,45(12): 1943-1945.
  • 3Sax' en H, Pettersson F. Nonlinear prediction of the hot metal silicon content in the blast furnace [J].ISIJ International, 2007,47 (12): 1732-1737.
  • 4Chela W, Wang B X, Han H L. Prediction and control for silicon content in pig ironb of blast furnace by integrating artificial neural network with genetic algorithm [J]. Irenmaking & Steelmaking, 2010,37(6): 458-463.
  • 5GAO C H, ZHOU Z M. Chaotic identification and prediction of silicon content in hot metal [J].Joumal of Iron and Steel Research In-ternationgal,2005,12(5):3-46.
  • 6Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and Applications[J]. Neurocomputing, 2006, 70(1): 489-501.
  • 7Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification [J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2012, 42 (2): 513-529.
  • 8刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 9周辉仁,唐万生,王海龙.基于差分进化算法的多旅行商问题优化[J].系统工程理论与实践,2010,30(8):1471-1476. 被引量:30

二级参考文献92

共引文献318

同被引文献61

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部