期刊文献+

类搜索算法 被引量:2

Clustering Search Algorithm
下载PDF
导出
摘要 提出利用类结构驱动的群体进化计算方法——类搜索算法(CSA).CSA在个体间构造簇类形态的虚拟连接关系,并通过对类组织的结构和类搜索过程进行动态调节来优化模拟进化系统的计算状态,提高群体的搜索效率.介绍了CSA的基本模型,并基于CSA融合进化算子与差分计算机制设计出数值优化算法CSA/DE.对多个典型高纬函数和复杂混合函数的仿真实验结果说明,CSA/DE是一种对高纬连续问题高效、稳定的搜索优化方法.该工作一方面验证了CSA的可行性和有效性;另一方面则显示:基于类搜索模型可有效融合异构且具有不同计算特性的搜索机制,形成对待求解问题更具针对性且协调性更佳的搜索计算方法.这为高性能优化算法的设计提供了一条新的途径. A novel evolutionary optimization method, clustering searching algorithm (CSA), is presented, In CSA, a virtual cluster group is constructed among individuals in order to adjust the operation state of simulated evolutionary system dynamically and improve the searching efficiency of population. After introducing the basic model of CSA, this paper presents CSA/DE, a new CSA blending the evolutionary search operators with the differential computing mechanism for solving numerical optimization problem. In simulations, 6 classical multidimensional functions and 6 challenging composition functions are selected to test the performance of CSA/DE. The experimental results show CSA/DE is an efficient and reliable search optimization algorithm for multidimensional continuous problem. The work of this paper verifies the feasibility and validity of CSA. Meanwhile, this research demonstrates, based on CSA, multiple heterogeneous searching mechanisms can be merged into one algorithm to get much more pertinence and harmony in searching process, thus providing a viable way for designing high-performance optimization algorithm.
作者 陈皓 潘晓英
出处 《软件学报》 EI CSCD 北大核心 2015年第7期1557-1573,共17页 Journal of Software
基金 国家自然科学基金(61203311 61105064) 陕西省教育厅科研计划(2013JK1183)
关键词 进化算法 类进化优化模型 类搜索机制 数值优化 evolutionary algorithm clustering evolution optimization model clustering searching mechanism numerical optimization
  • 相关文献

参考文献3

二级参考文献51

  • 1周育人,闵华清,许孝元,李元香.多目标演化算法的收敛性研究[J].计算机学报,2004,27(10):1415-1421. 被引量:14
  • 2公茂果,焦李成,杜海峰,马文萍.用于约束优化的人工免疫响应进化策略[J].计算机学报,2007,30(1):37-47. 被引量:16
  • 3Coello Coello C A, Lamont G B, Van Veldhuizen D A. Evolutionary Algorithms for Solving Multi-Objective Problems. Second Edition. Berlin: Springer Verlag, 2007.
  • 4Van Veldhuizen D A, Lamont G B. Multiobjective evolutionary algorithms: Analyzing the state-of the-art. Evolutionary Computation, 2000, 8(2): 125-147.
  • 5Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 6Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-- Part Ⅰ: A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 1998, 28(1): 26-37.
  • 7Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221-248.
  • 8Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
  • 9Kita H, Yabumoto Y, Mori N, Nishikawa Y. Multi-objective optimization by means of the thermodynamical genetic algorithm//Proceedings of the International Conference on Parallel Problem Solving from Nature. Berlin, Germany, 1996 504-512.
  • 10Mori N, Yoshida J, Tamaki H, Kita H, Nishikawa Y. A thermodynamical selection rule for the genetic algorithm// Proceedings of the IEEE Conference on Evolutionary Computation. Perth, Australia, 1995:188-192.

共引文献61

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部