期刊文献+

大数据时代下高校思想政治工作的挑战与机遇 被引量:8

On the Challenge and Opportunity of Ideological and Political Work of Colleges and Universities in the Background of Big Data
下载PDF
导出
摘要 大数据表现出大容量、多样性、速度和价值等特征。大数据时代背景下,大学生与外界学习交流方式更多样,但思想教育方面的信息却在减少且存在信息鸿沟。高校思想政治工作应运用大数据提供信息的全面性预见性和相关性,从思想和技术两方面来提高思政工作质量。 Big data has the features such as volume, variety, velocity and value and so on. In the background of big data, college students have more ways to interact with the external environment. However, the information from their education of thought is lessened and has a certain gap. Ideological and political work of colleges and universities can apply big data to provide the overall, Predictable and relative information for the sake of promoting the quality of thought and technology.
作者 杜伟
机构地区 厦门理工学院
出处 《黔南民族师范学院学报》 2015年第3期95-98,共4页 Journal of Qiannan Normal University for Nationalities
关键词 大数据 高校思想政治工作 挑战 机遇 big data ideological and political work of colleges and universities challenge opportunity
  • 相关文献

参考文献4

二级参考文献46

  • 1[OL].<http://hadoop.apache.org.>.
  • 2WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 3TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 4Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 5Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 6Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 7DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.
  • 8Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219.
  • 9Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7.
  • 10http: //www. dbms2, com/2008/08/26/known-applications of mapreduce/.

共引文献772

同被引文献29

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部