期刊文献+

砷在超富集植物蜈蚣草羽片中的分布规律(英文)

Accumulation of arsenic and its distribution in pinnae of hyperaccumulator Pteris vittata L.
下载PDF
导出
摘要 【目的】探明砷在超富集植物蜈蚣草不同叶位羽片中的分布,为优化采样方法进而准确评估植物修复效率提供依据。【方法】采用大田取样与室内分析相结合的方法,研究不同叶位的蜈蚣草羽片中砷分布的规律。【结果】蜈蚣草不同叶位羽片中砷浓度差异较明显:中部羽片砷浓度分别是基部羽片和顶部羽片的35%和37%,由基部羽片到顶部羽片砷浓度变化现先降低后升高的变化趋势,随着羽片叶位增加呈"U"型分布。蜈蚣草羽叶中部羽片砷富集量是基部羽片的3.1倍,是顶部羽片的2.8倍,蜈蚣草羽叶砷富集量中部羽片较高,基部羽片和顶部羽片较低,呈倒"U"型分布。【结论】中部羽片砷浓度较低,但砷累积量较大,因此通过采集羽片样品来评估蜈蚣草修复效率时要兼顾底部羽片、中部羽片和顶部羽片。 [ Objective ]Chinese brake fern (Pteffs vittata L) has been identified as an arsenic (As) hyperaccumula- tor. The present study was conducted to obtain insight into accumulation of As and its distribution in pinnae of P. vittata L. ,which provide the basis to optimize the sampling method and evaluate the phytoremediation efficiency accurately. [ Method ]Field sampling and laboratory analysis were used to research As accumulation and distribution in pinnae of hy- peraccumulator P. vittata L. [ Result ]As concentration in pinnae varied depending on their position along the frond. As concentration in the middle pinnae accounted for 35% and 37% of the basal and top pinnae ,respectively. Therefore, there was a "U"-type distribution of As concentration along the frond. For As accumulation ,based on biomass and As concentration in the middle pinnae was 3.1 times and 2.8 times higher than those in the basal and top pinnae, showing a "∩ "-type distribution in the high-As P. vittata. [ Conclusion ]As concentration in the middle pinnae is low,while As accumulation was high,therefore,the basal,middle and top pinnae should be given consideration while evaluating the phytoremediation efficiency in phytoremediation projects accurately.
出处 《南方农业学报》 CAS CSCD 北大核心 2015年第5期755-759,共5页 Journal of Southern Agriculture
基金 National Natural Science Foundation(41071215) Guangxi Natural Acience Foundation(2014GXNSFBA118223)
关键词 蜈蚣草 羽片 富集 分布 P. vittata L. arsenic pinnae accumulation distribution
  • 相关文献

参考文献5

二级参考文献123

  • 1廖晓勇,陈同斌,谢华,肖细元.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究[J].环境科学学报,2004,24(3):455-462. 被引量:129
  • 2陈同斌,张斌才,黄泽春,刘颖茹,郑袁明,雷梅,廖晓勇,朴顺姬.超富集植物蜈蚣草在中国的地理分布及其生境特征[J].地理研究,2005,24(6):825-833. 被引量:27
  • 3CHEN Tongbin YAN Xiulan LIAO Xiaoyong XIAO Xiyuan HUANG Zechun XIE Hua ZHAI Limei.Subcellular distribution and compartmentalization of arsenic in Pteris vittata L.[J].Chinese Science Bulletin,2005,50(24):2843-2849. 被引量:17
  • 4[69]Conklin D S, Conklin D S, Kung C. Interactions between gene products involved in divalent cation transport in Saccharomyces cerevision [J]. Mol. Gen. Genet,1994,244:303-311.
  • 5[70]Li L, Kaplan J. Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity [J]. J.Biol.Chem.,1998,273:22181-22187.
  • 6[71]van der Zaal E J, Neuteboom L W, Pinas J E, Schat H, Verkleij J, Hooykaas P J J. Overexpression of a zinc transporter gene from Arabidopsis can lead to enhanced zinc resistance and zinc accumulation [J]. Plant Physiol.,1999,119:1-9.
  • 7[1]Adriano D C, Wenzel W W and Blum W E H. Role of phytoremediation in the establishment of a global soil remediation network[A]. In:Proceedings International Seminar on Use Plants for Environmental Remediation[C]. Kosaikaikan, Tokyo, Japan, 1997,3-25.
  • 8[2]Raskin I, Smith R D and Salt D E. Phytoremediation of metals: using plants to remove pollutants from the environment[J]. Current Opinion in Biotechnology, 1997, 8:221-226.
  • 9[3]Ebbs S D, Lasat M M, Brady D J, Cornish J, Gordon R, Kochian L V. Phytoextraction of cadmium and zinc from a contaminated site[J]. J. Environ. Qual., 1997, 26:1424-1430.
  • 10[4]Salt D E, Smith R D, Raskin I. Phytoremediation[J]. Annu.Rev.Plant Physiol. Plant Mol. Biol., 1998, 49:643-668.

共引文献449

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部