期刊文献+

基于改进遗传算法的多式联运网络优化 被引量:3

Optimization of Multimodal Transportation Network Based on Improved Genetic Algorithm
下载PDF
导出
摘要 在对多种运输方式比较分析的基础上,从运输成本、换装成本及时间惩罚成本3个角度,建立多式联运网络模型,采用改进遗传算法进行模型求解,在标准遗传算法基础上引入移民算子,保证了种群多样性,避免了局部最优,增强了算法搜索能力.采用MATLAB计算平台对模型进行案例求解,结果表明,采用多式联运网络运作模型的成本降低了45.8%,从而验证了多式联运网络运作模型的有效性和实用性. Mathematical models of multimodal transportation are built by integrating transportation cost, conversion cost and punishment cost of time based the comparison of various modes of transportation. Model solution algorithm uses improved Genetic Algorithm added immigration factor, which can avoid the local optimum, ensure the diversity population, and enhance search abilities. Models are solved with MATLAB computing platform, and will achieve the optimal network operation scheme of models. Example results show that port logistics multimodal transportation network operation cost is reduced by 45.8%, which has verified the effectiveness and practicability of the proposed network operation models.
出处 《成组技术与生产现代化》 2015年第2期23-31,共9页 Group Technology & Production Modernization
基金 攀枝花市科技计划资助项目(2014CY-G-27)
关键词 多式联运 遗传算法 网络优化 multimodal transportation genetic algorithm network optimization
  • 相关文献

参考文献9

  • 1杨清波.美国多式联运综述[J].铁道货运,2004,22(5):39-41. 被引量:6
  • 2Stephan Krygsman, Martin Dijst, Theo Arentze. Muhimodal public transport:an analysis of travel time elements and the in- terconnectivity ratio [J]. Transport Policy, 2004, 11 ( 3 ) 265-275.
  • 3Hedi Ayed,Damel Khadraoui, Zineb Habbas. Transfer graph approach for muhimodal transport problems[J]. Communica- tions in Computer and Information Science, 2008,14:538-547.
  • 4Ayed H, Galvez-Fenandez C, Habbas Z, et al. Solving time-de- pendent multimodal transport problems using a transfer graph modelp[J]. Combinatorial Optimization in Industrial Engineer- ing,2011,61(2) :391-401.
  • 5Bontekoning Y M,Macharis C,Trip J J. Is a new applied trans- portation research field emerging: a review of intermodal rail- truck freight transport[J]. Transportation Research Part A: Policy and Practice, 2004,38 ( 1 ) : 1-34.
  • 6Dennis Rondinelli, Michael Berryb. Multimodal transportation, logistics and the environment managing interactions in a global eeonomy[J]. European Management Journal, 2000, 18 ( 4 ) : 398-410.
  • 7Angelica Lozano, Giovanni Storchi. Shortest viable path algo- rithm in muhimodal network[J]. Transportation Research Part A:Policy and Practice,2001,35(3):225-241.
  • 8Bas Groothedde, Cees Ruijgrok, Lnri Tavasszy. Towards col- laborative intermodal hub networks: a case study in the fast moving consumer goods market [J]. Transportation Research Part E : Logistics and Transportation Review, 2005,41(6) : 567- 583.
  • 9魏航,李军,刘凝子.一种求解时变网络下多式联运最短路的算法[J].中国管理科学,2006,14(4):56-63. 被引量:31

二级参考文献15

  • 1李引珍,郭耀煌.交通运输网络最短路径关键边问题研究[J].中国管理科学,2004,12(4):69-73. 被引量:28
  • 2E.W.Dijkstra.A note on two problems inconnection with graphs[J].Numer.Math.,1959,1:269-271.
  • 3National Commission on IntermodalTransportation,Toward a National IntermodalTransportation System[R].Final Report to Congress,US DOT,Washington,DC,1994.
  • 4Rawlings,One System,Many Partners:Reflections of the Chicago Area TransportationStudy's Intermodal Advisory Task Force[R].1997,97-17.
  • 5Angelica Lozano,Giovanni Storchi.Shortestviable path algorithm in multimodal networks[J].Transportation Research,Part A,2001,35:225-241.
  • 6Modesti,Sciomachen.A utility measure forfinding multiobjective shortest paths in urban multimodal transportation networks[J].European Journal of Operational Research,1998,111:495-508.
  • 7Angelica Lozano,Giovanni Storchi,Shortestviable hyperpath in multimodal networks[J].Transportation Research,Part B,2002,36:853-874.
  • 8Elise D.M.,Hani S.M..Least possible timepaths in stochastic,time-varying networks[J].Computers and Operations Research,1998,25(12):1107-1125.
  • 9Elise D.M.,Hani S.M..Path comparisons for apriori and time-adaptive decisions in stochastic,time-varying networks[J].European Journal of Operational Research,2003,146:67-82.
  • 10Athanasiso Z.,Dimitrios K.,Hani S.M..Designand implementation of parallel time-dependentleast time path algorithm for intelligent transportation systems applications[J].Transportation Research,Part C,1997,5(2):95-107.

共引文献35

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部