期刊文献+

基于关联分类的中文短信分类 被引量:4

Associative Classification Algorithm Applied to the Classification of Chinese SMS
下载PDF
导出
摘要 为高效地识别垃圾短信,在关联分类算法基础上,提出基于语序的关联分类(associative classification based on word order,ACW)算法.该算法利用关联规则挖掘方法,同时结合句法顺序,生成分类规则.通过实验证明,在短信分类领域,ACW算法的效果优于传统关联分类算法. The short messaging service ( SMS) spam was effectively recognized based on the associative classification algorithm, and an algorithm called ACW was proposed. The algorithm generated ordered classification rules with association rules mining method by using the semantic order words. In the experiments, that ACW is better than the traditional associative classification algorithm in the territory of classification of SMS is demonstrated in this paper.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2015年第7期1020-1027,共8页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61170221)
关键词 关联分类 句法顺序 垃圾短信识别 associative classification word order SMS spam recognition
  • 相关文献

参考文献17

二级参考文献72

  • 1张燕,傅建明.垃圾短信的识别与追踪研究[J].计算机应用研究,2006,23(3):245-247. 被引量:21
  • 2陈晓云,陈袆,王雷,李荣陆,胡运发.基于分类规则树的频繁模式文本分类[J].软件学报,2006,17(5):1017-1025. 被引量:19
  • 3陈晓云,胡运发.基于自适应加权的文本关联分类[J].小型微型计算机系统,2007,28(1):116-121. 被引量:6
  • 4CHEN Yongqiang, HU Leifang. Study on data mining application in CRM system based on insurance trade [C]//The 7th International Conference on Electronic Commerce. New York, USA: ACM, 2005: 839-841.
  • 5HANA J W, NISHIOB S, KAWANOC H,et al. Gen eralization-based data mining in object-oriented data bases using an object cube model[J]. Data and Knowl edge Engineering, 1998, 25(1/2): 55-97.
  • 6LI Wenmin, HAN Jiawei, PEI Jian. CMAR:accurate and efficient classification based on multiple class association rules [C]//The 2001 IEEE International Conference on Data Mining. Piscataway, NJ, USA: IEEE,2001 : 369-376.
  • 7LIU Bing, HSU W, MA Yiming. Integrating classification and association rule mining [C]//The 4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 1998: 80-86.
  • 8WANG Ke, ZHOU Senqiang, HE Yu. Growing decision tree on support-less association rules [C]//The 6 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2000: 265-269.
  • 9MURPHY-MERZJ C. UCI repository of machine learning databases[EB/OL]. [2008-04-12]. http:// www. its. uci. edu/mlearn/_MLRepository. html.
  • 10Miguel E Ruiz. Padmini Srinivasan Hierarchical Text Categorization Using Neural Networks [J] .InformationR, etrieval,2002, 5(1): 87-118.

共引文献30

同被引文献26

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部