摘要
电极材料是影响超级电容器性能的主要因素。本研究采用溶剂热法合成石墨烯和氮掺杂石墨烯,通过简单的化学法在其表面负载SnO2纳米粒子。利用刮涂工艺在FTO玻璃表面制备石墨烯、SnO2/石墨烯、氮掺杂石墨烯和SnO2/氮掺杂石墨烯薄膜,并经400℃热处理。分别以制备的石墨烯基薄膜和PVA/H3PO4为电极和电解质组装对称型全固态超级电容器。测试结果表明,与石墨烯相比,氮掺杂石墨烯具有较大的晶粒尺寸、较高的比表面积和较高的超电容性能;SnO2纳米粒子负载可显著提高石墨烯和氮掺杂石墨烯的超电容性能。
Graphene and N-doped graphene were synthesized by a solvothermal process, and their composites with SnO2 nanoparticles were prepared by a facile one-pot chemical solution method. The corresponding films were fabri- cated by a blade coating process and followed by heat treatment at 400℃ for 1 h. All-solid-state supercapacitors were fabricated with graphene based films and a polymer gel of polyvinyl alcohol/I-I3PO4 as electrodes and electrolyte, re- spectively. The capacitance performance of the as-fabricated supercapacitors was characterized. The results suggest that compared with graphene, N-doped graphene exhibits larger crystalline size, lower specific surface area, yet supe- rior capacitance performance, and the incorporation of SnO2 nanoparticles on graphene and N-doped graphene sheets enhances their capacitive characteristics.
出处
《无机材料学报》
SCIE
EI
CAS
CSCD
北大核心
2015年第6期662-666,共5页
Journal of Inorganic Materials
基金
International Scince and Technology Cooperation Program of China(2014DFA60150)
Qingdao Municipal Science and Technology Program(13-1-4-219-jch)
Open Fund of Key Laboratory of Inorganic Coating Materials,Chinese Academy of Sciences(KLICM-2012-06)