期刊文献+

Effect of Surface Nanocrystallization Induced by Fast Multiple Rotation Rolling on Cr-Rare Earth-Boronizing for Steel 45 under Low-Temperature 被引量:1

Effect of Surface Nanocrystallization Induced by Fast Multiple Rotation Rolling on Cr-Rare Earth-Boronizing for Steel 45 under Low-Temperature
下载PDF
导出
摘要 In this paper, fast multiple rotation rolling (FMRR) is applied to fabricate a nanostructured layer on the surface of steel 45. The FMRR samples are then Cr-Rare earth-boronized under low-temperature. The boride layer is characterized by using Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Experimental results indicate that the thickness of the boride layer is greatly increased by surface nanocrystallization. The boride layer with relatively continuous structure instead of the zigzag teeth structure is obtained, and the penetrating rate is enhanced by 2. 5-3.7 times when the FMRR samples are Cr-Rare earth- boronized at the temperature of 570 %, 600℃ and 650℃ for 6 h. The boride layer fabricated on the FMRR sample consists of single phase Fe2B. Severe plastic deformation with the grain size of approximately 100 nm in the top surface layer of steel 45 is observed, and the thickness of the plastic deformation layer is about 30 6xm. The microstructure in the top surface layer is characterized by Transmission electron microscopy (TEM). Grain boundaries are largely increased with high stacking fault energy after FMRR, leading to a significant enhancement of RE boron-chromizing speed. In this paper,fast multiple rotation rolling( FMRR) is applied to fabricate a nanostructured layer on the surface of steel 45. The FMRR samples are then Cr-Rare earth-boronized under low-temperature. The boride layer is characterized by using Scanning electron microscopy( SEM) and X-ray diffraction( XRD).Experimental results indicate that the thickness of the boride layer is greatly increased by surface nanocrystallization. The boride layer with relatively continuous structure instead of the zigzag teeth structure is obtained,and the penetrating rate is enhanced by 2. 5-3. 7 times when the FMRR samples are Cr-Rare earthboronized at the temperature of 570 ℃,600 ℃ and 650 ℃ for 6 h. The boride layer fabricated on the FMRR sample consists of single phase Fe2 B. Severe plastic deformation with the grain size of approximately 100 nm in the top surface layer of steel 45 is observed,and the thickness of the plastic deformation layer is about 30 μm.The microstructure in the top surface layer is characterized by Transmission electron microscopy( TEM). Grain boundaries are largely increased with high stacking fault energy after FMRR, leading to a significant enhancement of RE boron-chromizing speed.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期118-122,共5页 哈尔滨工业大学学报(英文版)
关键词 surface nanocrystallization fast multiple rotation roiling Cr-Rare earth-boronizing low temperature boride layer surface nanocrystallization fast multiple rotation rolling Cr-Rare earth-boronizing low temperature boride layer
  • 相关文献

参考文献1

二级参考文献4

共引文献2

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部