期刊文献+

车用电池模型研究

Car battery model study
下载PDF
导出
摘要 由于社会和环境的需求,电动汽车市场规模不断扩大,对车用电池的研究也在不断加深。其中,电池模型的研究起着十分关键的作用,它关系到电池系统对SOC、SOH、工作参数曲线等信息的描述准确与否,进而关系到相关控制策略的执行,影响整车的参数和性能。文章介绍了三类电池模型——简化电化学模型、等效电路模型和神经网络模型。简化电化学模型采用数学方法描述电池内部的反应过程,等效电路模型使用电路网络模拟电池动态模型,神经网络模型是利用人工智能的方法模拟电池的运行。神经网络非线性、多输入多输出、泛化能力强的特点,尤为有利于描述电池这一高度非线性系统,是研究和应用的重点。 As the requirement of society and environment,the scale of electronic vehicle market increase,and so does the research of battery.The research of battery model plays a key roel role among this.because it has a strong relationship with the accuracy of the description of SOC,SOH and running parameter bight.Forthermore,it relates to the execution of relative control strategy and vehicle parameter and function.This passage introduces 3 battery model——simplied electrochemical model,equivalent circuit model and NNs model.Simplied electrochemical model describes reaction in the battery using math tools,equivalent circuit model simulates dynamic model by electric circuit and NNs model stimulates work of battery using artificial intelligence.Unlinear,multiply-inputed,multiply-outputed and generalized NNs is specially fit for describing quite unlinear system—battery.so it is a key point for researching and applying.
作者 李多晴
机构地区 重庆交通大学
出处 《汽车实用技术》 2015年第6期14-15,27,共3页 Automobile Applied Technology
关键词 电动汽车 电池模型 人工智能 神经网络 electric vehicle battery model artificial intelligence NNs
  • 相关文献

参考文献5

二级参考文献32

  • 1林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:199
  • 2葛宏伟,梁艳春.进化Elman神经网络模型与非线性系统辨识[J].吉林大学学报(工学版),2005,35(5):511-519. 被引量:21
  • 3吴红杰,齐铂金,郑敏信,刘永喆.基于Kalman滤波的镍氢动力电池SOC估算方法[J].北京航空航天大学学报,2007,33(8):945-948. 被引量:23
  • 4SimonHaykin.神经网络原理[M].北京:机械工业出版社,2004..
  • 5Shin D H, Song H S, Kim H J. Advanced hybrid energy storage system for mild hybrid electric vehicles [ J]. Inter- national Journal of Automotive Technology, 2011, 12( 1): 125 - 130.
  • 6Van De Ville D. The pairing of a wavelet basis with a mildly redundant analysis via subband regression [ J]. IEEE Transactions on Image Processing, 2008, 17( 11): 2040 - 2052.
  • 7Malhi A, Yan R. Prognosis of defect propagation based on recurrent neural networks [ J]. 1EEE Transactions on Instrumentation and Measurement, 2011, 60 (3) : 703 - 711.
  • 8He H, Xiong R, Zhang X. State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model [ J]. IEEE Transactions on Vehicular Technology, 2011, 60 (4) : 1461 - 1469.
  • 9Li I, Wang W, Lee Y. A merged fuzzy neural network and its applications in battery state-of-charge estimation [ J]. IEEE Transactions on Energy Conversion, 2007, 22 (3): 697-708.
  • 10Lee Y, Wang W, Kuo T. Soft computing for battery state-of-charge (BSOC) estimation in battery string sys- tems [ J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 229-239.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部