期刊文献+

基于视觉背景提取的自适应运动目标提取算法 被引量:10

Adaptive moving object extraction algorithm based on visual background extractor
下载PDF
导出
摘要 在复杂场景下的视频运动目标提取是视频分析技术的首要工作。为了解决前景运动目标提取的精确度不高的问题,提出一种基于视觉背景提取(ViBE)的改进视频运动目标提取算法(ViBE+)。首先,在背景模型初始化阶段采用像素的菱形邻域来简化样本信息;其次,在前景运动目标提取阶段引入自适应分割阈值来适应场景的动态变化;最后,在更新阶段提出背景重建和调整更新因子方法来处理光照变化的情形。实验结果表明,对于复杂视频场景LightSwitch的运动目标提取结果在相似度指标上,改进后的算法与混合高斯模型(GMM)算法、码本模型算法以及原始ViBE算法相比,分别提高了1.3倍、1.9倍以及3.8倍。所提算法能够在有效时间内对复杂场景具有较好的自适应性,且性能明显优于对比算法。 The prior work of video analysis technology is video foreground detection in complex scenes. In order to solve the problem of low accuracy in foreground moving target detection, an improved moving object extraction algorithm for video based on Visual Background Extractor (ViBE), called ViBE , was proposed. Firstly, in the model initialization stage, each background pixel was modeled by a collection of its diamond neighborhood to simply the sample information. Secondly, in the moving object extraction stage, the segmentation threshold was adaptively obtained to extract moving object in dynamic scenes. Finally, for the sudden illumination change, a method of background rebuilding and update-parameter adjusting was proposed during the process of background update. The experimental results show that, compared with the Gaussian Mixture Model (GMM) algorithm, Codebook algorithm and original ViBE algorithm, the improved algorithm's similarity metric on moving object extracting results increases by 1.3 times, 1.9 times and 3.8 times respectively in complex video scene LightSwitch. The proposed algorithm has a better adaptability to complex scenes and performance compared to other algorithms.
出处 《计算机应用》 CSCD 北大核心 2015年第7期2029-2032,共4页 journal of Computer Applications
关键词 前景提取 视觉背景提取 背景建模 自适应阈值 更新因子 foreground extraction Visual Background Extractor (ViBE) background modeling self-adaptive threshold update-parameter
  • 相关文献

参考文献17

  • 1SHEN J, YANG W, LU Z, et al. Information integration for accurate foreground segmentation in complex scenes [J]. IET Image Processing, 2012, 6(5): 596-605.
  • 2KUMAR A, TUNG F, WONG A, et al. A decoupled approach to illumination-robust optical flow estimation [J]. IEEE Transactions on Image Processing, 2013, 22(10): 4136-4147.
  • 3李百惠,杨庚.混合高斯模型的自适应前景提取[J].中国图象图形学报,2013,18(12):1620-1627. 被引量:25
  • 4STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking [C]// CVPR 1999: Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 1999: 246-252.
  • 5ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction [C]// ICPR 2004: Proceedings of the 17th International Conference on Pattern Recognition. Piscataway: IEEE, 2004: 28-31.
  • 6KYUNGNAM K, CHALIDABHONGSE T H, HARWOOD D, et al. Background modeling and subtraction by codebook construction [C]// Proceedings of the 2004 International Conference on Image Processing. Piscataway: IEEE, 2004: 3061-3064.
  • 7刘红海,侯向华,郝秀兰,蒋建国.采用随机样本进行运动目标检测的算法研究[J].电子测量与仪器学报,2013,27(12):1155-1161. 被引量:8
  • 8余烨,曹明伟,岳峰.EVibe:一种改进的Vibe运动目标检测算法[J].仪器仪表学报,2014,35(4):924-931. 被引量:55
  • 9van DROOGENBROECK M, PAQUOT O. Background subtraction: experiments and improvements for ViBE [C]// CVPRW 2012: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2012: 32-37.
  • 10GE W, DONG Y, GUO Z, et al. Background Subtraction with dynamic noise sampling and complementary learning [C]// ICPR 2014: Proceedings of the 22nd International Conference on Pattern Recognition. Piscataway: IEEE, 2014: 2341-2346.

二级参考文献51

  • 1Stauffer C, Gfimson W. Adaptive background mixture models for real-time tracking [ C ] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Col-lins. CO: IEEE, 1999, 2: 246-252.
  • 2Shimada A, Arita D, Taniguchi R. Dynamic control of adaptive mixture-of-gaussians background model [ C ] // Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance. Sydney, Australia: IEEE, 2006.
  • 3Nonaka Y, Shimada A, Nagahara H, et al. Evaluation report of integrated background modeling based on spatio-temporal features [ C ] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Provi- dence, RI: IEEE, 2012, 6: 9-14.
  • 4KaewTraKulPong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection [ C ] // Proceedings of 2nd European Workshop on Adavanced Video Based Surveillance Systems. New York : Kluwer Academic Publishers. 2002 ; 135-144.
  • 5Liu Z, Huang K. Foreground object detection using top-down in- formation based on EM Framework [ J ]. IEEE Transactions on Image Processing, 2012, 21 (9): 4204-4217.
  • 6Karl J, Li K, Tang, Jet al. Background modeling method based on improved multi-Ganssian distribution [ C ] //Proceedings of IEEE International Conference on Computer Application and Sys- tem Modeling. Taiyuan: IEEE, 2010: 214-218.
  • 7Li Y, Tian H. An improved gaussian mixture background model with real-time adjustment of learning rate [ C ] //Proceedings ofIEEE International Conference on Information Networking and Automation. Kunming: IEEE, 2010 : 512-515.
  • 8Liu P, Lee B. Fast background modeling object detection using PCA and temporal difference[ C] // Proceedings of IEEE Inter- national Conference on Advance in Engineering, Science and Management. Nagapattinam, Tamil Nadu : IEEE, 2012, 3 : 234- 238.
  • 9Tanaka T, Shimada A, Arita D, et al. Non-parametric back- ground and shadow modeling for object detection [ C ] // Pro- ceedings of 8th Asian Conference on Computer Vision. Tokyo: IEEE, 2007, 9: 159-168.
  • 10Vemulapalli R, Aravind R. Spatio-temporal nonparametric back- ground modeling and subtraction [ C ] // Proceedings of IEEE 12th International Conference on Computer Vision Workshops. Kyoto: IEEE, 2009,10: 1145-1152.

共引文献99

同被引文献68

  • 1刘勃,魏铭旭,周荷琴.一种基于区间分布的自适应背景提取算法[J].模式识别与人工智能,2005,18(3):316-321. 被引量:7
  • 2李刚,曾锐利,林凌,王蒙军.基于帧间颜色梯度的背景建模[J].光学精密工程,2007,15(8):1257-1262. 被引量:7
  • 3Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[ C]//Proceedings of the IEEE computer society conference on computer vision and pattern recognition. Los Alamitos, CA, USA : IEEE Computer Society, 1999 : 246 - 252.
  • 4Elgammal A M, Harwood D, Davis L S. Non-parametric model for background subtraction [ C ]//Proceedings of the 6th Euro pean conference on computer vision. Berlin, BE, GER : Springer-Verlag ,2000:751-767.
  • 5Liu Y, Yao H, Gao W, et al. Nonparamctric background generation[ J ]. Journal of Visual Communication & Image Representation ,2007,18 ( 3 ) :253-263.
  • 6Comaniciu D, Meer P. Mean Shift:a robust approach toward feature space analysis[ C]//Proc of IEEE transactions on pattern analysis and machine intelligence. Piscataway, N J, USA : IEEE Computer Society,2002:603-619.
  • 7Kim K, Chalidabhongse T H, Harwood D, et al. Real-time foreground-background segmentation using codebook model [ J ]. Real-time Imaging ,2005,11 ( 3 ) : 172-185.
  • 8Barnich O, Vanogenbroeck M. ViBe:a universal background subtraction algorithm for video sequences [ J ]. IEEE Transactions on Image Processing ,2011,20 ( 6 ) : 1709-1724.
  • 9Lucia M, Alfredo P. A self-organizing approach to background subtraction for visual surveillance applications [ J ]. IEEE Transactions on Image Processing,2008,17 (7) : 1168-1177.
  • 10HULL J J. Incorporating language syntax in visual text recognition with a statistical model [ J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(12) : 1251 - 1256.

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部