期刊文献+

基于主动表观模型的稀疏聚类人脸识别算法

Face recognition algorithm based on cluster-sparse of active appearance model
下载PDF
导出
摘要 在复杂的非人脸成分干扰以及训练样本过大、训练样本之间相似度较高的条件下,原始稀疏表示分类(SRC)算法识别准确率较低。针对上述问题,提出一种基于主动表观模型的稀疏聚类(CS-AAM)人脸识别算法。首先,利用主动表观模型快速、准确地对人脸特征点进行定位,获取主要人脸信息;然后,对训练样本进行K-means聚类,将相似程度高的图像分为一类,计算聚类中心,将该中心作为原子构造过完备字典并进行稀疏分解;最后,计算稀疏系数和重构残差对人脸图像进行分类、识别。将该算法与最近邻(NN)、支持向量机(SVM)、稀疏表示分类(SRC)、协同表示分类(CRC)人脸识别算法在ORL和Extended Yale B人脸数据库上对不同样本数及不同维数的人脸图像分别进行识别率测试,在相同样本数或相同维数情况下CS-AAM算法识别率均高于其他算法。在ORL人脸库中选取样本数为210时,相同维数条件下CS-AAM算法识别率为95.2%;在Extended Yale B人脸库上选取样本数为600时,CSAAM算法识别率为96.8%。实验结果表明,该算法能够有效地提高人脸图像的识别准确率。 The recognition accuracy rate of traditional Sparse Representation Classification (SRC) algorithm is relatively low under the interference of complex non-face ingredient, large training sample set and high similarity between the training samples. To solve these problems, a novel face recognition algorithm based on Cluster-Sparse of Active Appearance Model (CS-AAM) was proposed. Firstly, Active Appearance Model (AAM) rapidly and accurately locate facial feature points and to get the main information of the face. Secondly, K-means clustering was run on the training sample set, the images with high similarity degree were assigned to a category and the clustering center was calculated. Then, the center was used as atomic to structure over-complete dictionary and do sparse decomposition. Finally, face images were classified and recognized by computing sparse coefficients and reconstruction residuals. The face images with different samples and different dimensions from ORL face database and Extended Yale B face database were tested for comparing CS-AAM with Nearest Neighbor (NN), Support Vector Machine (SVM), Sparse Representation Classification (SRC), and Collaborative Representation Classification (CRC). The recognition rate of CS-AAM algorithm is higher than other algorithms with the same samples or the same dimensions. Under the same dimensions, the recognition rate of CS-AAM is 95.2% when the selected number of samples is 210 on ORL face database; the recognition rate of CS-AAM is 96. 8% when the selected number of samples is 600 on Extended Yale B face database. The experimental results demonstrate that the proposed method has higher recognition accuracy rate.
出处 《计算机应用》 CSCD 北大核心 2015年第7期2051-2055,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61172144) 辽宁省科技攻关计划项目(2012216026)
关键词 人脸识别 稀疏表示分类 主动表观模型 稀疏聚类 过完备字典 face recognition Sparse Representation Classification (SRC) Active Appearance Model (AAM) sparse clustering over-complete dictionary
  • 相关文献

参考文献15

  • 1CHOI K, TOH K-A, BYUN H. Incremental face recognition for large-scale social network services [J]. Pattern Recognition, 2012, 45(8): 2868-2883.
  • 2马小虎,谭延琪.基于鉴别稀疏保持嵌入的人脸识别算法[J].自动化学报,2014,40(1):73-82. 被引量:56
  • 3LIAO S, JAIN A K, LI S Z. Partial face recognition: alignment-free approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5): 1193-1205.
  • 4TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 5LIANG J, WANG M, CHAI Z, et al. Different lighting processing and feature extraction methods for efficient face recognition [J]. IEEE Transactions on Image Processing, 2014, 8(9): 528-538.
  • 6BELHUMEUR P N, HESPANDA J P, KIREGEMAN D J. Eigenfaces vs Fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 7BARTLETT M S, MOVELLAN J R, SEJNOWSKI T J. Face recognition by independent component analysis [J]. IEEE Transactions on Neural Networks, 2002, 13(6): 1450-1464.
  • 8VAPNIK V N. The nature of statistical learning theory [J]. IEEE Transactions on Neural Networks, 1997, 8(6): 1564.
  • 9WISKOTT L, FELLOUS J-M, KUIGER N, et al. Face recognition by elastic bunch graph matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775-779.
  • 10WRIGHT J, YANG A, GANESH A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.

二级参考文献63

  • 1王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 2曹林,王东峰,刘小军,邹谋炎.基于二维Gabor小波的人脸识别算法[J].电子与信息学报,2006,28(3):490-494. 被引量:22
  • 3高全学,梁彦,潘泉,陈玉春,张洪才.SVD用于人脸识别存在的问题及解决方法[J].中国图象图形学报,2006,11(12):1784-1791. 被引量:27
  • 4KIM K. Intelligent immigration control system by using passportognition and face verification[ C]// Advances in Neura] Networics -ISNN2005,LNCS 3497. Berlin: Springer, 2005: 147 -'156.
  • 5METAXAS D,VENKATARAMAN S,VOGLER C_ Image-basedstress recognition using a model-based dynamic face tracking systemf C]// Computational Science - ICCS 2004, LNCS 3038. Berlin:Springer, 2004:813 -821.
  • 6WRIGHT J,ALLEN Y, GANESH A. Robust face recognition viasparse representationf J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2009,31(2):210 -227.
  • 7KLEMA V C. The singular value decomposition: its computationand some applications [ J]. IEEE Transactions on Automatic Con-trol, 1980,25(2): 164-176.
  • 8ZHANG D Q, CHEN S C, ZHOU Z H. A new face recognitionmethod based on SVD perturbation for single example image per per-son[ J]. Applied Mathematics and Computation, 2005, 163(2):895 -907.
  • 9HONG Z Q. Algebraic feature extraction of image recognition[ J].Pattern Recognition, 1991,24( 3) : 211 -219.
  • 10T1AN Y, TAN T N,WANG Y H,et al. Do singular values containadequate information for face recognition [ J]. Pattern Recognition,2003, 36(6):649-655.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部