期刊文献+

基于插值细分的逼近细分法 被引量:16

An Approximating Subdivision Based on Interpolating Subdivision Scheme
下载PDF
导出
摘要 通过在Hassan的四点三重插值细分法中引入一个偏移变量,推导出了一种逼近细分法,从而使三重逼近细分和插值细分统一到一个细分格式.该方法利用细分格式的生成多项式,在理论上分析了提出的细分格式的一致收敛性和Ck连续性;通过对细分格式中参数u取不同的值,可对生成的极限曲线形状进行控制.数值实验结果表明,文中方法是合理有效的. This paper presents a new method for constructing approximating subdivision, which is obtained by introducing an offset variable to the interpolating four-point ternary subdivision schemes proposed by Hassan. The new scheme unifies the ternary approximating subdivision and interpolation subdivision. The uniform convergence and Ck smoothness of the limit curve produced by our subdivision scheme are analyzed by means of the Laurent polynomials. It is pointed out that the parameter in the subdivision can be adjusted to control the shape of the limit curve. Numerical experiments show that the proposed method is effective.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第7期1162-1166,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金-广东联合基金重点项目(U1135003) 国家自然科学基金(61472466 61070227)
关键词 插值细分法 逼近细分法 生成多项式 Ck连续性 interpolating subdivision approximating subdivision Laurent polynomial C-continuity
  • 相关文献

参考文献19

  • 1Dyn N, Levin D, Gregory J A. A 4-point interpolatory subdivision scheme for curve design [J]. Computer Aided Geometric Design, 1987, 4(4): 257-268.
  • 2Dyn N, Gregory J A, Levin D. Analysis of uniform binary subdivision schemes for curve design [J]. Constructive Approximate, 1997, 7(1): 127-147.
  • 3Dyn N. Subdivision schemes in CAGD[M]//Light W. Advances in Numerical Analysis, Vol 2. Oxford: Clarendeon Press, 1992: 36-104.
  • 4Hassan M F, Ivrissimitzis I P, Dodgson N A. et al. An interpolating 4-point C2 ternary stationary subdivision scheme [J]. Computer Aided Geometric Design, 2002,19(1): 1-18.
  • 5Siddiqi S S, Rehan K. A ternary three-point scheme for curve designing [J].Intemational Journal of Computer Mathematics, 2010, 87(8): 1709-1715.
  • 6Siddiqi S S. A stationary ternary C" scheme for curve sketching [J]. European Journal of Scientific Research, 2009, 30(3): 380-388.
  • 7Siddiqi S S, Rehan K. Improved binary four point subdivision scheme and new comer cutting scheme [J]. Computers & Mathematics with Applications, 2010, 59(8): 2647-2657.
  • 8Li X, Zheng J M. Interproximate curve subdivision [J]. Journal of Computational and Applied Mathematics, 2013, 244: 36- 48.
  • 9Pan J, Lin S J, Luo X N. A combined approximating and interpolating subdivision scheme with C2 continuity [J]. Applied Mathematics Letters, 2012, 25(12): 2140-2146.
  • 10王栋,张曦,李桂清.混合细分曲线及其应用[J].计算机辅助设计与图形学学报,2007,19(3):286-291. 被引量:7

二级参考文献38

  • 1郑红婵,叶正麟,赵红星.双参数四点细分法及其性质[J].计算机辅助设计与图形学学报,2004,16(8):1140-1145. 被引量:30
  • 2骆岩林,汪国昭.生成曲线的有理稳定细分方法[J].高校应用数学学报(A辑),1998,13(1):61-66. 被引量:8
  • 3蔡志杰.变参数四点法的理论及其应用[J].数学年刊(A辑),1995,1(4):524-531. 被引量:10
  • 4黄章进.单变量均匀静态细分格式的连续性分析和构造[J].软件学报,2006,17(3):559-567. 被引量:7
  • 5Chaikin G. An algorithm for high speed curve generation [J]. Computer Graphics and Image Processing, 1974, 3(4): 346~349
  • 6Dyn N, Levin D, Gregory J A. A 4-point interpolatory subdivision scheme for curve design [J].Computer Aided Geometric Design, 1987, 4(4): 257~268
  • 7Dyn N, Gregory J A, Levin D. Analysis of uniform binary subdivision schemes for curve design [J].Constructive Approximation, 1991, 7(2): 127~147
  • 8Dyn N. Subdivision Schemes in Computer-Aided Geometric Design [M].In: Light W, ed. Advances in Numerical Analysis, Vol. 2. Oxford: Clarendon Press, 1992. 36~104
  • 9Cavaretta A S, Dahmen W, Micchelli C A. Stationary subdivision [J].Memoirs of the American Mathematical Society, 1991, 93(453): 1~186
  • 10Cai Zhijie. Convergence, error estimation and some properties for four-point interpolation subdivision scheme [J].Computer Aided Geometric Design, 1995, 12(5): 459~468

共引文献35

同被引文献45

引证文献16

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部