摘要
Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal(BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic(A2 /O). The ASM2 d implemented on the platform of WEST2011 software and the Bio Win activated sludge/anaerobic digestion(AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2 d parameters(the reduction factor for denitrification(η NO3, H), the maximum growth rate of heterotrophs( μ H), the rate constant for stored polyphosphates in PAOs(q pp), and the hydrolysis rate constant(k h)) were adjusted. Whereas three Bio Win parameters(aerobic decay rate(b H), heterotrophic dissolved oxygen(DO) half saturation(K OA), and Y P /acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations(ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen(N-NO3), total nitrogen(TN), and total phosphorus(TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand(COD) to total Kjeldahl nitrogen(TKN) ratio(COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.
Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage pho- redox process configuration, anaerobic anoxic oxic (A^2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification (ηNO3.H), the maximum growth rate ofheterotrophs (μH), the rate constant for stored polyphosphates in PAOs (qpp), and the hydrolysis rate constant (kh)) were adjusted. Whereas three BioWin parameters (aerobic decay rate (bH), heterotrophic dissolved oxygen (DO) half saturation (KOA), and Yp/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.
基金
Supported by the College of Scientific Innovation Significant Cultivation Fund Financing Projects(No.708047)
the Key Special Program for the Pollution Control(No.2012ZX07101-003)
the National Natural Science Foundation of China(No.51208173)
the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)