期刊文献+

基于有理数多项式先验模型的图像盲去模糊 被引量:2

Blind Image Deblurring Based on Rational Polynomial Prior Model
下载PDF
导出
摘要 图像盲去模糊问题是当今图像处理领域的热点问题之一。基于混合高斯先验模型的变分贝叶斯去模糊算法可以有效地复原模糊图像,成为一种重要的图像去模糊算法。虽然混合高斯先验模型可以很好地逼近自然图像的梯度分布,但是该模型在图像梯度值较大处往往会产生过拟合导致去模糊后的图像产生振铃效应,严重影响了图像可读性。利用有理数多项式先验模型代替混合高斯模型逼近自然图像的梯度分布,克服算法的上述缺点。有理数多项式函数的分母多项式强制函数在梯度值较大值时平滑,所以有效地避免了过拟合现象的发生,从而使得模糊核估计得更准确,减少振铃效应。实验结果表明了算法的可行性和有效性。 Nowadays blind image deblurring is one of the hot issues in the field of image processing. Variational Bayesian algorithm deblurring algorithm based on Gaussian mixture prior model can recover blurred image effectively, therefore it becomes a kind of important image deblurring algorithm. Although Gaussian mixture prior model can be well fitted to natural image gradient distribution, Gaussian mixture prior model causes overfitting at the big values of image gradient, so deblurring image undergo ringing artifact which can affect the image readability. Consequently, the method overcome above-mentioned algorithm disadvantage by using rational polynomial prior model to fit to natural image gradient distribution instead of Gaussian mixture prior model. The method can avoid overfitting effectively because denominator polynomial of rational polynomial function constrains smoothness of function at the big values of image gradient. The method makes estimation of blurring kernel more accurate, and reduces ringing artifact. The experimental results show the effectiveness and feasibility of the algorithm in this paper.
出处 《电视技术》 北大核心 2015年第14期9-12,共4页 Video Engineering
关键词 图像盲复原 运动去模糊 有理数多项式函数 自然图像梯度分布 振铃效应 blind image restoration motion deblurring rational polynomial distribution of natural image gradient ringing artifact
  • 相关文献

参考文献10

  • 1FERGUS R,SINGH B, HERTZMANN A, et al. Removing camera shake from a single photograph[C]HProc. ACM Trans. Graphics (TOG). [S.I.] : ACM, 2006: 787-794.
  • 2SHAN Q, J1A J, AGARWALA A. High-quality motion deblurring from a single image[C]//Proc. ACM Trans. Graphics (TOG).[S.1.]: ACM, 2008:73.
  • 3KRAHMER F, LIN Y, MCADOO B, et al. Blind image deconvolu- tion : motion blur estimation[J]. IMA Preprints Series, 2006 (21) : 33-35.
  • 4STEFAN R, MICHAEL J. Fields of experts: freamwork for learn- ing image priors[J].Computer Vision and Pattern Recognition, 2005 ( lO ) : 56-59.
  • 5YAIR W, FREEMAN W T. What makes a good model of natural images[J].Computer Vision and Pattern Recognition, 2007 (8): 14-20.
  • 6MISKIN J, MACKAY D. Ensemble learning for blind image sepa- ration and deeonvolution[J].Neural Computing,2000(9) : 123-141.
  • 7OSHER S, RUDIN L I. Feature-oriented image enhancement us- ing shock filters[J]. SIAM Journal on Numerical Analysis, 1990, 27(4) :919-940.
  • 8MISKIN J W. Ensemble learning for independent component anal- ysis[D]. Cambridge: University of Cambridge, 2000.
  • 9RICHARDSON W H. Bayesian-based iterative method of image restoration[J]. JOSA, 1972,62( 1 ) : 55-59.
  • 10LUCY L B. An iterative technique for the rectification of ob- served distributions[J]. The Astronomical Journal, 1974 (79) : 745.

同被引文献21

  • 1赵剡,李东兴,许东.抑制复原图像振铃波纹的频域循环边界算法[J].北京航空航天大学学报,2006,32(11):1290-1294. 被引量:11
  • 2L1 C, YIN W, JIANG H. et al. An efficient augmented la- griangian method with applications to total variation minimi- zation [ J ]. Computational optimization and applications, 2013,56 (3) :507-530.
  • 3TANIMOTO M, TEHRANI M, TOSHIAKI J. TV for 3-D spatial communication[ C ]//Proceedings of the IEEE. [ S. 1. ] :IEEE,2012:905-917.
  • 4NIU S, GAO Y, BIAN Z, et al. Sparse-view x-ray CT re- construction via total generalized variation regularization [J]. Physics in medicine and biology, 2014,59 (12): 2997-3017.
  • 5RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Journal of physics d, 1992,60 (2) :259-268.
  • 6CHAN S H, KHOSHABEH R, GIBSON K B,et al. An augmented lagrangian method fi)r total variation video resto- ration [ J ]. IEEE transactions on image processing, 2011 , 20(11) :3097-311 l.
  • 7ZUO W M, LIN Z C. A generlized accelerated proximal gradient approach for total variation based image restoration [J ]. IEEE transactions on image processing, 2011, 20(10) :2748-2759.
  • 8PATEL V M, MALEH R, GILBERT A C, et al. Gradient- based image recovery' methods from incomplete fourier mesurements[ J]. IEEE transactions on image processing, 2012,21 ( 1 ) :94-105.
  • 9NG M K, YUAN X M, ZHANG W X. Coupled variational image decomposititm anti restoration model for I)lurred car- toon-plus-texture? images with missing pixels [ J ]. IEEE transactions on image processing, 2013,22 ( 6 ) : 2233--2246.
  • 10MEYER Y. Oscillating patterns in image processing ant! in some nonlinear evolution equations[ M ]. [ S. 1. ]:American mathematical society ,2001.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部