期刊文献+

引入混合特征的最大名词短语双向标注融合算法 被引量:4

A Combination Algorithm of Bi-directional Labeling in Identifying of Maximal-length Noun Phrases with Hybrid Feature
下载PDF
导出
摘要 最大名词短语的识别对机器翻译等诸多自然语言处理任务有着:惹要的意义.以汉语最大名词短语识别为研究任务,在分析现有方法的基础上,从汉语的语H学特殊性以及基于支持向量机的序列标注算法的特点出发,考查了基于混合特征的融合算法的适应性.实验证叨,釆用词和基本组块混合标注单元的标注方法对汉语最大名词短语的识别是有效的,并且其i E反向识别结果具有一定的互补性,在此基础上提出的基于"边界分歧"的双向序列标注融合算法恰能发掘双向识别的互补性,并达到较高的融合精度. Maximal-length noun phrase indentification is meaningful to machine translation and many other natural language processing tasks. For the purpose of studying Chinese maximal-length noun phrases, on the basis of current methods, starting from linguistics particularity in Chinese and characteristics of sequence labeling algorithm based on support vector machine (SVM), we explore the adaptability of combination algorithm based on hybrid features. The algorithm is effective, by theoretical analysis and experimental results, to identify Chinese maximal-length noun phrase by applying hybrid unit with words and base chunk, and it is complementary in bi-directional labeling results. From the above, a combination algorithm of bi-directional labeling based on "boundary fork" can discover complement of two directions identification and achieve a high combination accuracy.
出处 《自动化学报》 EI CSCD 北大核心 2015年第7期1274-1282,共9页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划) 2013CB329303) 国家自然科学基金(61132009 61202244 61201352)资助~~
关键词 最大名词短语 双向标注 基本组块 混合特征 Maximal-length noun phrase bi-directional labeling base chunk hybrid feature
  • 相关文献

参考文献15

  • 1Wang Z G, Zong C Q, Xue N W. Bidirectional sequence la- beling via dual decomposition. In: Proceedings of the 12th China National Conference, CCL 2013 and First Interna- tional Symposium. Suzhou, China: Springer, 2013. 325-332.
  • 2Kudo T, Matsumoto Y. Chunking with support vector machines. In: Proceedings of the 2nd Meeting of the North American Chapter of the Association for Compu- tational Linguistics on Language Technologies. Pittsburgh, PA, USA: Association for Computational Linguistics, 2001. 192-199.
  • 3Tjong Kim Sang E F. Noun phrase recognition by sys- tem combination. In: Proceedings of the 1st North Ameri-can Chapter of the Association for Computational Linguis- tics Conference. Seattle, Washington, USA: Association for Computational Linguistics, 2000. 50-55.
  • 4Chen W L, Zhang Y J, Isahara H. An empirical study of Chi- nese chunking. In: Proceedings of the 2006 COLING/ACL on Main Conference Poster Sessions. Sydney, Australia: As- sociation for Computational Linguistics, 2006. 97-104.
  • 5鉴萍,宗成庆.基于双向标注融合的汉语最长短语识别方法[J].智能系统学报,2009,4(5):406-413. 被引量:9
  • 6李业刚,黄河燕.汉语组块分析研究综述[J].中文信息学报,2013,27(3):1-8. 被引量:12
  • 7周强,孙茂松,黄昌宁.汉语最长名词短语的自动识别[J].软件学报,2000,11(2):195-201. 被引量:37
  • 8Chen K H, Chen H H. Extracting noun phrases from large- scale texts: a hybrid approach and its automatic evaluation. In: Proceedings of the 32nd Annual Meeting of Association of Computational Linguistics. New York, USA: Association for Computational Linguistics, 1994. 234-241.
  • 9Cai D F, Liu X, Zhou Q L, Ye N. Chinese maximal noun phrase parsing based on cascaded conditional random fields. In: Proceedings of the 2009 International Conference on Natural Language Processing and Knowledge Engineering. Dalian, China: IEEE. 2009. 1-7.
  • 10李国臣,王瑞波,李济洪.基于条件随机场模型的汉语功能块自动标注[J].计算机研究与发展,2010,47(2):336-343. 被引量:7

二级参考文献82

共引文献95

同被引文献28

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部