期刊文献+

基于标准压缩模量和液限推求地基土全压力段压缩模量的分析方法 被引量:4

An analysis method for calculating compression modulus of foundation soil based on standard compression modulus and liquid limit
原文传递
导出
摘要 以京沪高铁深厚地层细粒土固结试验数据为基础,以e-lgp曲线包含分式函数的复合函数表达和土体液限与压缩指数的线性关系为依据,提出了基于土体基本物性指标标准压缩模量E1?2和液限wL推求正常固结原状地基土全压力段压缩模量的简化方法,其适用性得到了京津城际铁路试验数据的验证。结果表明,Harris函数能较好地描述土体压缩的e-lgp曲线特征,E1?2和wL能分别反映曲线低压力段割线斜率和高压力点切线斜率,建立的地基土压缩模量估算方法具有良好精度,其中,100-1 000 k Pa常压力段的误差均值仅为7.89%,高压力段约为13.70%,只在低压力段变异性较大;研究成果提供了缺少e-lgp曲线情况下简便快速获取土体压缩模量的新途径。 Based on the consolidation data of deep fine-grained soils distributed along the Beijing-Shanghai high-speed railway, a simplified method is proposed for determining the compression modulus of the undisturbed normally consolidated foundation soils using standard compression modulus E12 and liquid limit wL, in which the composite function expression containing the segmental function of the e-lgp curve and the linear relationship between liquid limit and compression index are also adopted. It is shown that the Harris function can describe the e-lgp curve characters well, and E12 can reflect the secant slope of the low-pressure section of the compression curve, while wL can reflect the tangent one of the high pressure section. The compression modulus estimation method of foundation soil yields good results for all levels of pressure, namely, the average error is just 7.89% in the commonly used pressure section of 100-1 000 k Pa, and in the high pressure section is about 13.70%, whereas significant error occurs only in the low pressure section. The study results provide a new approach to rapidly obtain the compression modulus of soil in the case that the e-lgp curve is lacking.
出处 《岩土力学》 EI CAS CSCD 北大核心 2015年第7期2073-2080,共8页 Rock and Soil Mechanics
基金 国家973计划课题(No.2013CB036204) 中央高校基本科研业务费科技创新项目(No.SWJTU11CX007)
关键词 压缩模量 正常固结原状土 液限 e-lgp曲线 Harris函数 compression modulus normal consolidation of intact soil liquid limit e-lgp curve Harris function
  • 相关文献

参考文献13

  • 1J H. The undisturbed consolidation behavior of clay[J]. Transactions of the American Society of Civil Engineers, 1955, 120(1): 1201-1227.
  • 2刘用海,朱向荣,常林越.基于Casagrande法数学分析确定先期固结压力[J].岩土力学,2009,30(1):211-214. 被引量:25
  • 3姜安龙,赵春风,高大钊.确定先期固结压力的数学模型法[J].岩土力学,2003,24(2):292-295. 被引量:24
  • 4王志亮,郑明新,李永池.求前期固结应力的数学模型研究及应用[J].岩土力学,2005,26(10):1587-1590. 被引量:25
  • 5SKEMPTON A W. Notes on compressibility of clays[J]. Quarterly Journal of the Geological Society, 1944, 100(2): 119- 135.
  • 6TERZAGHI K, PECK R B. Soil mechanics in engineering practice[M]. New York: Wiley, 1967.
  • 7赤井浩一,柴田微,石原研而,等.土力学[M].杨灿文等译.北京:中国铁道出版社,1984.
  • 8SRIDHARAN A, NAGARAJ H B. Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties[J]. Canadian GeotechniealJournal, 2000, 37(3): 712- 722.
  • 9LI K S, WHITE W. Use and misuses of regression analysis and curve fitting in geotechnical engineering[C]// Proceedings of the Conference on Probabilistic Methods in Geotechnical Engineering. Rotterdam: A.A. Balkema, 1993.
  • 10CHERUBINI C, GIASI C I. Correlation equations for normal consolidated clays[C]//Proceedings of the International Symposium on Coastal Geotechnical Engineering in Practice. Rotterdam: A.A. Balkema, 2000.

二级参考文献16

  • 1姜安龙,郭云英,高大钊.确定先期固结压力的试验研究[J].南昌航空大学学报(自然科学版),2003,19(3):5-8. 被引量:6
  • 2王国欣,肖树芳,黄宏伟.天然结构性软粘土应力历史的确定[J].同济大学学报(自然科学版),2005,33(8):1007-1010. 被引量:3
  • 3魏道垛 胡中雄.上海浅层地基上的前期固结压力及有关压缩参数的试验研究[J].岩土工程学报,1980,2(4):13-22.
  • 4张淑焕.确定先期固结压力的新方法[J].港口工程,1988,(6):44-49.
  • 5.GB/T50123-1999.土工试验方法标准[S].,..
  • 6CASAGRANDE A. The determination of the preconsolidation load and its practical significance[J]. Proc. of First ICMFE, 1936, (3): 60-64.
  • 7SCHMERTMANN J H. The undisturbed consolidation behavior of clay[J]. Transactions of ASCE, 1955, 120(2): 1201 - 1226.
  • 8数学手册编组.数学手册[M].人民教育出版社,1981..
  • 9国家质量技术监督局,中华人民共和国建设部.GB/T50123-1999土工试验方法标准[S].北京:中国标准出版社,1999.
  • 10余平安,赵群霞.先期固结压力图解法电算程序[J].勘察科学技术,1999(1):24-25. 被引量:1

共引文献48

同被引文献29

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部