期刊文献+

基于Gabor和改进LDA的人耳识别 被引量:2

An ear recognition algorithm based on Gabor features and improved LDA
下载PDF
导出
摘要 针对人耳识别中无法避免的小样本问题,提出了基于Gabor特征和改进LDA(ILDA)的识别算法。该算法首先提取人耳局部Gabor特征,然后重新定义Fisher准则和类内分散度矩阵,再将高维空间映射到低维后寻找最优投影方向,最后利用训练样本与测试样本特征投影值的欧氏距离进行分类识别。与传统方法相比,新算法能有效解决人耳识别中的小样本问题,获得较高的识别准确率。 We propose a novel ear recognition algorithm based on Gabor features and improved LDA to deal with the inevitable problem of small sample size. We firstly extract ear features by the local Gabor filter,and redefine the new Fisher criteria and the intra class scatter matrix. Then we seek the optimal projection direction by mapping from a higher-dimensional space to a lower-dimensional space, Finally we make a comparison of the Euclidean distance of projecting feature vectors between the training samples and the testing samples, and classify them accordingly. Experimental results show that, compared with the traditional methods, the proposed algorithm can effectively solve the small sample size problem in ear recognition with a higher recognition accuracy.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第7期1355-1359,共5页 Computer Engineering & Science
基金 江西省教育厅科技项目(GJJ14430) 江西省教育厅重点项目(赣教技字[12770]号)
关键词 局部Gabor特征 改进LDA算法 欧氏距离 小样本问题 人耳识别 local gabor feature improved LDA euclidean distance small sample size problem ear recognition
  • 相关文献

参考文献6

二级参考文献66

  • 1李晓华,沈兰荪.基于小波压缩域的统计纹理特征提取方法[J].电子学报,2003,31(z1):2123-2126. 被引量:8
  • 2肖冰,王映辉.人脸识别研究综述[J].计算机应用研究,2005,22(8):1-5. 被引量:53
  • 3许廷发,韦岗,倪国强.基于并行结构的Gabor小波神经网络算法及应用[J].光学精密工程,2006,14(2):247-250. 被引量:8
  • 4钟子晶,陈绵书,石宇.基于矩阵行矢量鉴别矢量集的人脸识别[J].计算机工程与应用,2007,43(18):205-206. 被引量:2
  • 5Burge M, Burger W. Ear Biometrics [M]. Boston: KluwerAcademic Publishers, 1999: 273-286.
  • 6Fukunaga K. Introduction to Statistical Pattern Recognition: 2nd ed [M]. New York: Academic Press, Inc, 1990: 94-102.
  • 7JIANG Wei, TAO Jun-wei, WANG Li-li. A Novel Palmprint Recognition Algorithm Based on PCA&FLD [C]// International Conference on Digital Teleeommunications, Cote d'Azur, Aug 29-31, 2006. Washington D C, USA: IEEE, 2006: 28-31.
  • 8Xiong Huilin, Swamy M N S. Ahmad M O. Two-dimensional FLD for Face Recognition [J]. Pattern Recognition (S0031-3203), 2005, 38(7): 1121-1124.
  • 9Yang J, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recogntion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2004, 26(1): 131-137.
  • 10Yu H, Yang J. A direct LDA algorithm for high dimensional data-with application to face recognition [J]. Pattern Recognition(S0031-3203), 2001, 34(10): 2067-2070.

共引文献55

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部