期刊文献+

用LDG方法求解奇异摄动Volterra积分微分方程 被引量:2

Solving Singularly Perturbed Volterra Integro- differential Equations with LDG Method
下载PDF
导出
摘要 本文介绍局部间断有限元(LDG)方法,构造求解奇异摄动Volterra积分微分方程的LDG数值格式.算例表明,在局部加密网格下,LDG解的数值通量在节点处具有2p+1阶的一致超收敛性质. In this paper the local discontinuous Galerkin (LDG) numerical scheme for solving singularly perturbed Volterra integro - differential equations is constructed. Numerical example demonstrates that under the layer - adapted meshes the numerical flux of the LDG solution at nodes possesses the 2p + 1 order uniform superconvergenee property.
作者 陶霞
出处 《数学理论与应用》 2015年第2期18-23,共6页 Mathematical Theory and Applications
基金 国家自然科学基金委数学天元基金资助项目(11426103) 湖南省重点学科建设项目资助和湖南省高校科技创新团队支持计划资助
关键词 局部间断有限元方法 奇异摄动Volterra积分微分方程 一致超收敛 Local Discontinuous Galerkin method Singularly perturbed Voherra integro - differential equation Uniform supereonvergenee
  • 相关文献

参考文献5

二级参考文献21

  • 1YanXu,Chi-wangShu.LOCAL DISCONTINUOUS GALERKIN METHODS FOR THREE CLASSES OF NONLINEAR WAVE EQUATIONS[J].Journal of Computational Mathematics,2004,22(2):250-274. 被引量:15
  • 2Ziqing Xie,Zhimin Zhang.SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS[J].Journal of Computational Mathematics,2007,25(2):185-200. 被引量:18
  • 3J. P. Kauthen. A survey of singularly perturbed Volterra equations[J]. Appl. Numer. Math., 1997,24: 95.114.
  • 4P. Alotto, A. Bertoni, I. Perugia and D. Schotzau. A local discontinuous Galerkin method for the simulation of rotating electrical machines[J]. COMPEL,2001,20:448-462.
  • 5I. Perugia and D. Schotzau. On the coupling of local discontinuous Galerkin and conforming finite element methods[i]. J. Sci. Comput” 2001, 16(4):411-433.
  • 6P. Zhu, Z. Q. Xie and S. Z. Zhou. A uniformly convergent continuous-discontinuous Galerkin method for singularly perturbed problems ofconvection-diffusion type[J].Appl. Math. Comput., 2011,217: 4781-4790.
  • 7P. Zhu, Z. Q. Xie and S. Z. Zhou. Uniformly convergence of a coupled methodfor convection-diffusion problems in 2-D Shishkin mesh[J]. submitted.
  • 8J. P. Kauthen. A survey of singularly perturbed Volterra equations[J]. Appl. Numer. Math., 1997, 24:95-114.
  • 9J. S. Angell and W. E. Olmstead. Singularly perturbed Volterra integral equations[J]. SIAM J. Numer. Math., 1987, 47:1-14.
  • 10J. S. Angell and W. E. Olmstead. Singularly perturbed Volterra integral equations II [J]. SIAM J. Numer. Math., 1987, 47:1150-1162.

共引文献24

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部