期刊文献+

二阶非线性中立型差分方程的振动性与渐近性

Oscillation and Asymptotic Behavior for the Bounded Solutions of Type Second-order Neutral Difference Equations
下载PDF
导出
摘要 利用分析的方法和不动点原理,研究了一类不稳定的二阶非线性中立型差分方程,给出了该类方程有界解振动的一个充要条件及非振动解趋向于零的一个充分条件,对已有文献中某些结果进行了推广和改进. A class of unstable type second- order neutral difference equations is investigated by using the method of analysis and the fixed point theorem. One sufficient and necessary condition for oscillation of the bouned solutions of the equations is obtained,and one sufficient condition for the convergence to zero of nonscillatory solutons is also gained. The results extend some existing results in the literature.
作者 郑允利
出处 《嘉应学院学报》 2015年第5期15-18,共4页 Journal of Jiaying University
关键词 振动性 渐近性 中立型差分方程 有界解 oscillation asymptotic behayior neutral difference equations bounded solutions
  • 相关文献

参考文献6

二级参考文献21

  • 1孙喜东.不稳定的二阶中立型差分方程的振动性[J].数学的实践与认识,2005,35(9):182-184. 被引量:1
  • 2贺铁山,杨逢建.变时滞奇数阶非线性中立型差分方程的正解[J].大学数学,2005,21(6):53-56. 被引量:5
  • 3贺铁山.一类高阶非线性中立型差分方程组非振动解的存在性[J].纯粹数学与应用数学,2006,22(2):232-237. 被引量:1
  • 4Zhang Quanxin, Yan Jurang. Oscillation behavior of even order neutral differential equations with variable coefficients[J]. Applied Mathematics Letters, 2006(19):1202-1206.
  • 5Agarwal R P.Difference Equations and Inequalities[M].2nd ed. New York:Marcel Dekker,2000.
  • 6Ladas G, Qian C. Comparison results and Linearized oscillations for Higher Order Difference Equations[J]. Internat. J. Math. &: Math. Sci., 1992(15):129-142.
  • 7Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications[M]. Oxford:Clarendon,1991.
  • 8Bainov D D, Mishev D P. Oscillation Theory for Neutral Differential Equations with Delay[M]. Bristol: Adam Hilger. 1991.
  • 9Zhang Z G, Zhang J L. Oscillation criteria for second order advanced diffcrencc equations with summation small coefficient[J]. Computer Math Applic,1999,138:25-31.
  • 10Erbe L H, Kong Q K, Zhang B G. Oscillation Theory for Functional Differential Equations[M]. Dekker, New York,1995.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部