期刊文献+

基于稀疏学习的自适应近邻分类算法 被引量:1

Self-adaptive neighbor classification based on sparse learning
下载PDF
导出
摘要 为解决k-NN算法中固定k的选定问题,引入稀疏学习和重构技术用于最近邻分类,通过数据驱动(data-driven)获得k值,不需人为设定。由于样本之间存在相关性,用训练样本重构所有测试样本,生成重构系数矩阵,用l1-范数稀疏重构系数矩阵,使每个测试样本用它邻域内最近的k(不定值)个训练样本来重构,解决k-NN算法对每个待分类样本都用同一个k值进行分类造成的分类不准确问题。UCI数据集上的实验结果表明,在分类时,改良k-NN算法比经典k-NN算法效果要好。 To deal with the problem that k-NN algorithm selects the fixed k,the sparse learning and reconstruction techniques for classification were used,so that k value was obtained through data-driven without artificial set.Due to the existence correlation between the samples,every test sample was used to reconstruct all the training samples,reconstruction coefficient matrix was generated.The l1-norm was used to penalize the objective function,so that each test sample used its neighborhood nearest k(a variable value)training samples to reconstruct,which solved the problem of inaccurate classification caused by k-NN algorithm using the fixed k value.Results of experiments on UCI datasets show that the improved k-NN algorithm is better than the classical k-NN algorithm in terms of classification effect.
出处 《计算机工程与设计》 北大核心 2015年第7期1912-1916,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61170131 61263035 61363009) 国家863高技术研究发展计划基金项目(2012AA011005) 国家973重点基础研究发展计划基金项目(2013CB329404) 广西自然科学基金项目(2012GXNSFGA060004) 广西高校科学技术研究重点基金项目(2013ZD041) 广西研究生教育创新计划基金项目(YCSZ2015095 YCZ2015096)
关键词 稀疏学习 重构技术 数据驱动 l1-范数 邻域 sparse learning reconstruction techniques data-driven l1-norm neighborhood
  • 相关文献

参考文献14

  • 1Zhang Shichao. Cost-sensitive classification with respect to waiting cost [J]. Knowledge-Based System, 2010, 23 (5): 369-378.
  • 2Zhu Xiaofeng, Zhang Shichao, Jin Zhi, et al. Missing value estimation for mix ed-attribute data sets [J]. IEEE Transac- tions Knowledge Data Engineering, 2011, 23 (1): 110-121.
  • 3Lall U, Sharma A. A nearest-neighbor bootstrap for resam- pling hydrologic time series [J]. Water Resour Res, 1996, 32 (3): 679-693.
  • 4Jenatton R, Gramfort A, Michel V, et al. Mutial scale mining of fMRI data with hierarchical structured sparsity [J]. SIAM Journal on Imaging Sciences, 2012, 5 (3): 835-856.
  • 5Zhu Xiaofeng, Huang Zi, Shen Hengtao, et al. Dimensionali- ty reduction by mixed-kernel canonical correlation analysis [J]. Pattern Recognition, 2012, 45 (8): 3003-3016.
  • 6KANG P, CHO S. Locally linear reconstruction for instance- based learning [J]. Pattern Recognition, 2008, 41 (11): 3507-3518.
  • 7梁锦锦,吴德.稀疏L1范数最小二乘支持向量机[J].计算机工程与设计,2014,35(1):293-296. 被引量:6
  • 8Zhu Xiaofeng, Huang Zi. Sparse hashing for fast multimedia search [J]. ACM Transactions on Information System, 2013, 31 (2): 1-24.
  • 9Zhu Xiaofeng, Zhang Lei, Huang Zi. A spars e embedding and least variance encoding app roach to hashing [J]. IEEE Tran- sactions on Image Processing, 2014, 23 (9): 3737-3750.
  • 10Zhu Xiaofeng, Huang Zi, Cui Jiangtao. Hengtao Shen: Video-to-shot tag propagation by grapsparse group lasso [J]. IEEE Transactions on Multimedia, 2013, 15 (3): 633-646.

二级参考文献13

共引文献5

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部