期刊文献+

水热法合成掺杂氮多孔碳及其超级电容特性 被引量:2

Hydrothermal synthesis and supercapacitive properties of nitrogen-doped porous carbon
下载PDF
导出
摘要 分别以乙二胺、乙酰胺为氮源采用水热法合成掺氮多孔碳材料,利用X射线衍射、傅里叶红外光谱、扫描电子显微镜、比表面测试等对样品的结构、组成、形貌、比表面积进行了分析和表征,通过循环伏安、恒流充放电对样品的电化学性能进行了测试,探讨了不同氮源对多孔碳材料组成、表面形貌、孔径、比表面积以及电化学性能的影响。通过乙酰胺引入氮源的多孔碳材料表面微观形貌呈蜂窝状的多孔结构,孔的内部相连,比表面积为233.1m2/g,孔径约5.1nm。其孔结构丰富,孔尺寸分布单一。作为超级电容器的电极材料,经恒流充放电测试,比容量为188.7F/g。 Nitrogen-doped porous carbon materials are synthesized by hydrothermal method,using ethylenediamine,acetamide as the nitrogen source respectively.The structure,components,morphology and specific surface area of the as-produced samples are characterized by X-ray diffraction,Fourier transform infrared spectroscopy,scanning electron microscopy,nitrogen adsorption-desorption analysis and electrical conductivity measurements.The electrochemical performance of the samples is analyzed by the cyclic voltammetry and the charge-discharge tests.The effects of different nitrogen sources on the surface morphology,pore size,specific surface area and electrochemical performance of nitrogen-doped porous carbon materials are discussed.The surface morphology of the porous carbon material using acetamide as the nitrogen source is a structure with internally connected honeycomb holes.Specific surface area of this sample is 233.1m2/g and its pore size is about 5.1nm.As a super capacitor electrode material,this sample shows a specific capacity of 188.7F/g by the constant current charge-discharge tests.
出处 《西安理工大学学报》 CAS 北大核心 2015年第2期132-137,共6页 Journal of Xi'an University of Technology
基金 国家国际科技合作专项资助项目(2015DFR50350) 国家自然科学基金资助项目(21276208) 陕西省教育厅自然科学专项资助项目(14JK1531) 西安理工大学科技创新计划资助项目(2014CX024)
关键词 水热法 掺杂氮多孔碳材料 超级电容器 电化学性能 hydrothermal method nitrogen-doped porous carbon materials super capacitor electrochemical performance
  • 相关文献

参考文献2

二级参考文献93

共引文献30

同被引文献23

  • 1刘永胜,成来飞,张立同,徐永东,张显.熔炼铀和铀合金用涂层研究进展[J].稀有金属材料与工程,2005,34(11):1686-1689. 被引量:4
  • 2PADHI A K, NANJUNDASWAMY K S, GOODE NOUGH J B. Phospho-olivines as positive electrode materials for rechargeahle lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188- 1194.
  • 3YANG S, ZAVALIJ P Y, WHITTINGHAM M S. Hy- drothermal synthesis of lithium iron phosphate cathodes [J]. Electrochemistry Communications, 2001, 3 (9) : 505-508.
  • 4JIANG J, DAHN J R. ARC studies of the reaction be- tween LiFePO4 and I.iPF6 or LiBOB EC/DEC electro- lytes [J]. Electrochemistry Communications, 2004, 6 (7) : 724-728.
  • 5HERLE P S, ELLIS B, COOMBS N, et al. Nano-net- work electronic conduction in iron and nickel olivine phosphates [J]. Nature Materials, 2004, 3 (3): 147- 152.
  • 6DELACOURT C, WURM C, LAFFONT L, et al. Electrochemical and electrical properties of Nb-and/or C- containing LiFePO4 composites [J]. Solid State Ionics, 2006, 177(3/4): 333-341.
  • 7AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. The study of surface phenomena related to electro- chemical lithium intercalation into Li MOy host materials (M=Ni, Mn)[J]. Journal of the Electrochemical Socie- ty, 2000, 147(4): 1322-1331.
  • 8HONG S A, KIM S J, LEE BG, et al. Carbon coating on lithium iron phosphate (LiFePO4): comparison be- tween continuous supercritical hydrothermal method and solid-state method [J]. Chemical Engineering Journal, 2012, 198-199: 318-326.
  • 9KIM J K, CHOI J W, CHAUHAN G S, et al. En- hancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis [J]. Electrochimica Acta, 2008, 53(28):8258-8264.
  • 10LIU H, CAO Q, FU L J, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications, 2006,8 ( 10 ) : 1553-1557.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部