期刊文献+

革兰氏阴性菌血红素载体蛋白Hemophore的结构及作用机制 被引量:6

Structural and functional reveal of the hemophore in Gram-negative bacteria
原文传递
导出
摘要 血红素作为宿主体内最丰富的铁离子来源,是致病菌营养竞争的主要目标,尤其对于血红素自身合成途径部分丧失的细菌。革兰氏阴性菌血红素转运系统由血红素载体蛋白(Hemophore)、外膜血红素受体、TonB-ExbB-ExbD复合物、ABC转运体等组成。Hemophore是存在于细菌细胞膜上或分泌到胞外环境中的一种蛋白。它能从宿主血红素结合蛋白中捕获血红素并将其传递给外膜受体。目前,在不同革兰氏阴性菌中已发现3种类型的Hemophore,分别是HasA、HxuA和HmuY型。本文将详细描述这3种Hemophore捕获血红素及与外膜受体相互作用的机制,以期为进一步研究其他细菌血红素载体蛋白的功能及作用机制奠定基础。 Heme is the most abundant iron source in the host. It has been proven that heme was the main nutrient competition aim for the pathogenic bacteria, especially for the bacteria that is not able to synthesize heme. The heme acquisition system of Gram-negative bacteria is consist of hemophore, outer membrane heine receptor, TonB-ExbB-ExbD complex, periplasmic heme-binding proteins, ABC transporter and so on. Hemophore is a type of outer membrane or secreted protein that can extract heme from host hemoprotein and pass it to the outer membrane heme receptors. Up to date, three kinds of hemophores, HasA, HxuA and HmuY, have been identified in some Gram-negative bacteria. In this paper, we described the mechanism of these three types hemophore to capture heme and the interaction with outer membrane heme receptors in detail. It will be helpful for further understanding the function of hemophore and its working mechanism.
出处 《微生物学通报》 CAS CSCD 北大核心 2015年第7期1358-1365,共8页 Microbiology China
基金 国家自然科学基金青年科学基金项目(No.31302131) 教育部博士点基金项目(新教师类)(No.20135103120006) 中国博士后科学基金项目(No.2014M552378)
关键词 革兰氏阴性菌 血红素 血红素转运系统 血红素载体蛋白 作用机制 Gram-negative bacteria, Heme, Heme acquisition system, Hemophore, Workingmechanism
  • 相关文献

参考文献39

  • 1Heinemann IU, Jahn M, Jahn D. The biochemistry of heme biosynthesis[J]. Archives of Biochemistry and Biophysics, 2008, 474(2): 238-251.
  • 2Contreras H, Chim N, Credali A, et al. Heme uptake in bacterial pathogens[J]. Current Opinion in Chemical Biology, 2014, 19: 34-41.
  • 3Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes[J]. Archives of Biochemistry and Biophysics, 2009, 481(1): 1-15.
  • 4Lansky IB, Lukat-Rodgers GS, Block D, et al. The cytoplasmic heme-binding protein (PhuS) from the heme uptake system of Pseudomonas aeruginosa is an intracellular heme-trafficking protein to the delta-regioselective heme oxygenase[J]. The Journal of Biological Chemistry, 2006, 281 (19): 13652-13662.
  • 5Cobessi D, Meksem A, Brillet K. Structure of the heme/laemoglobin outer membrane receptor ShuA from Shigella dysenteriae: heme binding by an induced fit mechanism[J]. Proteins, 2010, 78(2): 286-294.
  • 6Suits MD, Lang J, Pal GP, et al. Structure and heme binding properties of Escherichia coli O157:H7 ChuX[J]. Protein Science: The Protein Society, 2009, 18(4): 825-838.
  • 7Liu M, Ferrandez Y, Bouhsira E, et al. Heme binding proteins of Bartonella henselae are required when undergoing oxidative stress during cell and flea invasion[J]. PLoS One, 2012, 7(10): e48408.
  • 8Wyckoff EE, Mey AR, Payne SM. Iron acquisition in Vibrio eholerae[J]. Biometals: an International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 2007, 20(3/4): 405-416.
  • 9Mey AR, Payne SM. Haem utilization in 18brio cholerae involves multiple TonB-dependent haem receptors[J]. Molecular Microbiology, 2001, 42(3): 835-849.
  • 10程兴军,刘马峰,程安春.革兰氏阴性菌血红素转运系统结构及功能特点[J].中国生物化学与分子生物学报,2014,30(9):848-855. 被引量:10

二级参考文献87

  • 1Tolosano E, Fagoonee S, Morello N, et al. Heme scavenging and the other facets of hemopexin[J] . Antioxidants & redox signaling, 2010, 12(2):305-320.
  • 2Fournier C, Smith A and Delepelaire P. Haem release from haemopexin by HxuA allows Haemophilus influenzae to escape host nutritional immunity[J] . Mol Microbiol, 2011, 80(1):133-148.
  • 3Stojiljkovic I and Hantke K. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gram-negative bacteria[J] . The EMBO journal, 1992, 11(12):4359-4367.
  • 4Hornung J M, Jones H A and Perry R D. The hmu locus of Yersinia pestis is essential for utilization of free haemin and haem-protein complexes as iron sources[J] . Molecular microbiology, 1996, 20(4):725-739.
  • 5Ochsner U A, Johnson Z and Vasil M L. Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa[J] . Microbiology, 2000, 146(1):185-198.
  • 6Mills M and Payne S M. Identification of shuA, the gene encoding the heme receptor of Shigella dysenteriae, and analysis of invasion and intracellular multiplication of a shuA mutant[J] . Infection and immunity, 1997, 65(12):5358-5363.
  • 7Torres A G and Payne S M. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157: H7[J] . Molecular microbiology, 1997, 23(4):825-833.
  • 8Lewis L A and Dyer D W. Identification of an iron-regulated outer membrane protein of Neisseria meningitidis involved in the utilization of hemoglobin complexed to haptoglobin[J] . J Bacteriol, 1995, 177(5):1299-1306.
  • 9Lewis L A, Sung M H, Gipson M, et al. Transport of intact porphyrin by HpuAB, the hemoglobin-haptoglobin utilization system of Neisseria meningitidis[J] . Journal of bacteriology, 1998, 180(22):6043-6047.
  • 10Ghigo J M, Letoffe S and Wandersman C. A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli[J] . Journal of bacteriology, 1997, 179(11):3572-3579.

共引文献9

同被引文献27

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部