期刊文献+

改进的r支配高维多目标粒子群优化算法 被引量:14

Improved r-dominance-based particle swarm optimization for multi-objective optimization
下载PDF
导出
摘要 高维多目标优化问题是广泛存在于实际应用中的复杂优化问题,目前的研究方法大都限于进化算法.本文利用粒子群优化算法求解高维多目标优化问题,提出了一种基于r支配的多目标粒子群优化算法.采用r支配关系进行粒子的比较与选择,并结合粒子群优化算法收敛速度快的优势,使得算法在目标个数增加时仍保持较强的搜索能力;为了弥补由此造成的群体多样性的丢失,优化非r支配阈值的取值策略;此外,引入决策空间的拥挤距离测度,并给出新的外部存储器更新方法,从而进一步防止算法陷入局部最优.对多个基准测试函数的仿真结果表明所得解集在收敛性、多样性以及围绕参考点的分布性上均优于其他两种算法. Multi-objective optimization problems (MOPs) are complex optimization problems existing in practice, for which most of the modem research methods are focused on evolutionary algorithms. In this paper, a multi-objective particle swarm optimization algorithm based on the r-dominance is proposed for investigating the behavior of the particle swarm optimization (PSO) in MOPs. The combination of the r-dominance with the fast convergence properties of PSO maintains strong search capabilities of the algorithm when the number of objectives increases. In particular, the value of the nonr-dominance threshold is varied in an improved way in order to keep desired population diversity. Furthermore, a new updating strategy of the extemal repository, which incorporates the crowding distance in the variable space, is presented to get rid of the local optimum. Effectiveness of the proposed algorithm is validated by several benchmark test functions. Results indicate that the proposed algorithm outperforms two other existing algorithms in terms of convergence, diversity and distribution over the reference point.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第5期623-630,共8页 Control Theory & Applications
基金 国家自然科学基金项目(61074023) 江苏省科技支撑计划项目(BE2012175) 江苏省普通高校研究生科研创新计划项目(KYZZ_0121)资助~~
关键词 高维多目标优化 偏好 粒子群优化 multi-objective optimization preference particle swarm optimization
  • 相关文献

参考文献21

  • 1ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y. Evolutionary many- objective optimization: a short review [C] //Proceedings of 2008 1EEE Congress on Evolutionary Computation. Hong Kong: IEEE, 2008:2424 - 2431.
  • 2孔维健,丁进良,柴天佑.高维多目标进化算法研究综述[J].控制与决策,2010,25(3):321-326. 被引量:50
  • 3SCHUTZE O, LARA A, COELLO C C A. On the influence of the number of objectives on the hardness of a multiobjective optimiza- tion problem [J]. 1EEE Transactions on Evolutionary Computation, 2011, 15(4): 444 - 455.
  • 4DEB K, KUMAR A. Interactive evolutionary multi-objective opti- mization and decision-making using reference direction method [C] //Proceedings of the 9th Annual Conference on Genetic and Evolu- tionary Computation. London: ACM, 2007:781 - 788.
  • 5SAID L B, BECHIKH S, GHEDIRA K. The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making [J]. IEEE Transactions on Evolutionary Computation, 2010, 14(5): 801 - 818.
  • 6巩敦卫,季新芳.融入偏好的区间高维多目标集合进化优化方法[J].控制理论与应用,2013,30(11):1369-1383. 被引量:7
  • 7THIELE L, MIETTINEN K, KORHONEN P J, et al. A preference- based evolutionary algorithm for multi-objective optimization [J]. Evolutionary Computation, 2009, 17(3): 411 - 436.
  • 8KENNEDY J, EBERHART R C. Particle swarm optimization [C] //Proceedings of the 4th IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 1995:1942 - 1948.
  • 9ZHANG E Z, WU Y E CHEN Q W. A practical approach for solv- ing multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization [J]. Reliability En- gineering & System Safety, 2014, 127:65 -76.
  • 10李倩,宫俊,唐加福.多目标粒子群算法在交叉培训规划中的应用[J].控制理论与应用,2013,30(1):17-22. 被引量:5

二级参考文献87

  • 1周勇,巩敦卫,张勇.混合性能指标优化问题的进化优化方法及应用[J].控制与决策,2007,22(3):352-356. 被引量:8
  • 2刘士新,宋健海,周山长.热轧带钢轧制批量计划优化模型及算法[J].控制理论与应用,2007,24(2):243-248. 被引量:16
  • 3Fonseca C M, Fleming P J. Genetic algorithm for multiobjective optimization: Formulation, discussion and generalization [C]. Proc of 5th ICGA. San Mateo: Morgan Kaufmann Publishers, 1993 : 416-423.
  • 4Deb K, Amrit P, Sameer A, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ [J] IEEE Trans on Evolutionary Computation, 2002, 6(2): 182- 197.
  • 5Zitzler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and the strength pareto approach [J]. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271.
  • 6Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8 (2) 149-172.
  • 7Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design[ J ]. Structural and Multidiseiplinary Optimization, 1992, 4(2): 99-107.
  • 8Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]. Proc of 1st Int Conf on Genetic Algorithms and Their Application. Hillsdale: L. Erlbaum Associates Inc, 1985: 93-100.
  • 9Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester: John Wiley and Sons Inc, 2001.
  • 10Coello C A C, Lamont G B. Applications of multiobjective evolutionary algorithms [M]. Singapore: World Scientific Publisher, 2004.

共引文献58

同被引文献90

引证文献14

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部