期刊文献+

飞机机场的信号噪声预测优化仿真研究 被引量:4

Research on Simulation Optimization of Airport Noise Prediction
下载PDF
导出
摘要 机场噪声预测对噪声的控制、机场周边的规划和航班计划的制定具有重要的指导作用。传统的机场噪声预测模型一般根据航空器NPD(噪声-推力-距离)曲线为基础预测噪声,缺少精确考虑特定外界条件对噪声传播的影响作用,导致其预测误差较大,但优点是预测较稳定。而基于机器学习的机场噪声预测模型虽综合考虑了特定外界环境对噪声的影响,但由于实际训练数据来源于实际监测点监测的历史数据,经常包涵错误信息,导致建立模型不准确等问题。针对上述问题,依靠实际监测点的噪声、气象数据,构建了朴素贝叶斯机场噪声修正预测模型,通过学习传统预测模型预测值相对于监测值的差值,修正传统预测模型由于客观外界因素造成的预测偏差,既保持传统模型预测稳定性,同时修正噪声关于外界环境造成的声音衰减。最后,通过对比实验可见,改进方法预测稳定性较高且具有一定的预测准确度。 The airport noise prediction plays an important role on the noise control. The traditional prediction model for airport noise prediction is based on the aircraft's noise-power-distance( NPD) curve. It has a big error because it is lack of consideration of the effect of meteorological conditions on noise propagation. Although the model based on machine learning considers the impact of the external environment,it is relys on historical data and predicts instability. This paper proposed the nave Bayesian network learning model for airport noise prediction correction which learns the difference between the prediction value of traditional model and the actual monitoring value. Finally,The experimental results show that this method has high prediction stability.
出处 《计算机仿真》 CSCD 北大核心 2015年第7期36-41,共6页 Computer Simulation
基金 国家自然科学基金重点项目(61139002) 国家"863计划"项目(2012AA063301) 国家科技支撑计划项目(2014BAJ04B02) 中国民用航空局科技项目(MHRD201006 MHRD201101) 中央高校基本科研业务费专项资金(3122013P013)
关键词 机场噪声预测 朴素贝叶斯 聚类 集成 Airport noise prediction Naive bayesian Clustering Ensemble
  • 相关文献

参考文献13

  • 1肖慧慧,王超,徐肖豪.机场飞机噪声评价量及其限值的探讨[J].噪声与振动控制,2011,31(2):134-137. 被引量:18
  • 2E R Boeker, E Dinges, B He. Integrated Noise Model(INM) Ver-sion 7.0 Technical Manual[ R]. Federal Aviation Administration;Office of Environment and Energy, 2008.
  • 3Y Yang, C J Hinde, D Gillingwater. Airport Noise Simulation U-sing Neural Networks[ C]. Proceedings of IEEE International JointConference on Neural Networks, 2008-3 : 1717-1923.
  • 4陈海燕,杨冰欣,徐涛,王建东.基于模糊支持向量回归的机场噪声预测[J].南京航空航天大学学报,2013,45(5):722-726. 被引量:7
  • 5A Darwiche. Bayesian networks[ J]. Communications of the ACM,2010,53(12); 80-90.
  • 6N A Zaidi,et al. Alleviating Naive Bayes Attribute IndependenceAssumption by Attribute Weighting [ J ]. Machine Learning Re-search, 2013,14(1) :1947-1988.
  • 7E Frank, M Hall, B Pfahringer. Locally Weighted Naive Bayes[C]. Proceedings of the Nineteenth Conference on Uncertainty inArtificial Intelligence, 2003-3:249-256.
  • 8前川善一郎.环境声学与建筑声学[M].北京:中国建筑工业出版社,2001:21-22.
  • 9J E Rosenbaum,E R Boeker,A Buer. Assessment of the HybridPropagation Model, Volume 2: Comparison with the IntegratedNoise Model[R]. Federal Aviation Administration: U.S. Depart-ment of Transportation, 2012.
  • 10徐涛,谢继文,杨国庆.一种基于层次聚类的机场噪声数据挖掘方法[J].南京航空航天大学学报,2013,45(5):715-721. 被引量:12

二级参考文献45

共引文献42

同被引文献25

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部