期刊文献+

基于分数阶模型的相空间中非保守力学系统的Noether准对称性 被引量:4

Noether Quasi-Symmetry for Nonconservative Mechanical System in Phase Space Based on Fractional Models
下载PDF
导出
摘要 提出并讨论了相空间中非保守力学系统的分数阶Noether对称性与守恒量。给出非保守Hamilton系统的分数阶Hamilton原理,建立了分数阶Hamilton正则方程;依据分数阶Hamilton作用量在无限小群变换下的不变性,得到了非保守相空间中分数阶Noether准对称变换的定义和判据,建立了非保守相空间中分数阶Noether准对称性与守恒量之间的联系,得到了相空间中分数阶守恒量;讨论了不存在非势广义力或规范函数等于零的特例,并举例说明结果的应用。 The fractional Noether symmetries and fractional conserved quantities for a non-conservative system in phase space are proposed and discussed. Firstly,the fractional Hamilton canonical equations for the non-conservative system are established. Secondly,based upon the invariance of the fractional Hamilton action under the infinitesimal transformations of group,the definitions and criterion of fractional Noether quasi-symmetric transformations are obtained,then the relationship between a fractional Noether symmetry and a fractional conserved quantity of nonconservative system in phase space is established,and the fractional conserved quantity is obtained. Finally,the special cases,which the generalized nonpotential forces are not exit or the gauge function is equal to zero,are discussed. At the end,two examples are given to illustrate the application of the results.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期37-42,48,共7页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(11272227) 苏州科技学院研究生科研创新计划资助项目(SKCX14_057)
关键词 分数阶模型 相空间 Noether准对称性 守恒量 fractional model phase space Noether quasi-symmetry conserved quantity
  • 相关文献

参考文献5

二级参考文献78

  • 1FU JingLi1,LI XiaoWei2,LI ChaoRong1,ZHAO WeiJia3 & CHEN BenYong4 1 Institute of Mathematical Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China,2 Department of Physics,Shangqiu Normal University,Shangqiu 476000,China,3 Department of Mathematics,Qingdao University,Qingdao 266071,China,4 Faculty of Mechanical Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China.Symmetries and exact solutions of discrete nonconservative systems[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1699-1706. 被引量:3
  • 2FU JingLi1, CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China,2 Department of Mechanics, Shanghai University, Shanghai 200072, China,3 Faculty of Mechanical-Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China.Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(3):545-554. 被引量:11
  • 3LUOShao-Kai,JIALi-Qun,CAIJian-Le.Noether Symmetry Can Lead to Non-Noether Conserved Quantity of Holonomic Nonconservative Systems in General Lie Transformations[J].Communications in Theoretical Physics,2005,43(2):193-196. 被引量:4
  • 4Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: Wiley-Interscience Publication).
  • 5Samko S G, Anatoly A K and Oleg I M 1993 Fractional Integrals and Derivatives (Yverdon: Gordon and Breach Science Publishers).
  • 6Riewe F 1996 Phys. Rev. E 53 1890.
  • 7Riewe F 1997 Phys. Rev. E 55 3581.
  • 8Agrawal O P 2002 J. Math. Anal. Appl. 272 368.
  • 9Dreisigmeyer D W and Young P M 2003 J. Phys. A 36 3297.
  • 10Mei F X and Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) p. 115.

共引文献56

同被引文献23

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部