期刊文献+

R^N中含Sobolev临界指数的拟线性椭圆方程组的多重正解

Multiplicity of Positive Solutions for Quasilinear Elliptic Systems Involving Sobolev Critical Exponent in R^N
原文传递
导出
摘要 研究了R^N上一类含Sobolev临界指数的p-Laplacian拟线性椭圆方程组.借助位势函数的特性,利用变分方法,通过对Nehari流形进行分解,证明了当参数(λ,μ)属于R^2中某个子集时,该类方程组至少存在2个正解. In this paper, we study the p-Laplacian quasilinear system involving Sobolev critical exponent in R^N. With the help of the properties of the weight function, by using variational method, and by using decomposition for Nehari manifold, we prove that the system exists at least two positive solutions when the pair of parameters (λ,μ) belongs to a certain subset in R2.
作者 张文丽
机构地区 长治学院数学系
出处 《数学进展》 CSCD 北大核心 2015年第4期562-572,共11页 Advances in Mathematics(China)
基金 山西省高校科技研究开发项目(No.20111129) 长治学院科研项目(No.2011113)
关键词 拟线性椭圆方程组 NEHARI流形 SOBOLEV临界指数 EKELAND变分原理 quasilinear elliptic system Nehari manifold Sobolev critical exponent Ekelandvariational principle
  • 相关文献

参考文献2

二级参考文献48

  • 1Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics[M]. McGraw-Hill, New York, 1974.
  • 2Martinson L K, Pavlov K B. Unsteady shear flows of a conducting fluid with a rheological power law[J]. Magnitnaya Gidrodinamika, 1971, 2: 50-58.
  • 3Kalashnikov A S. On a nonlinear equation appearing in the theory of non-stationary filtration[J]. Trud Sem I G Petrovski, 1978(in Russian).
  • 4Esteban J R, Vazquez J L. On the equation of turbulent filteration in one-dimensional porous media[J]. Nonlinear Anal, 1982, 10: 1303-1325.
  • 5Alyes C O, de Morais Filho D C, Souto M A S. On systems of elliptic equations involving subcritical or critical Sobolev exponents[J]. Nonlinear Analysis, 2000, 42(5): 771-787.
  • 6Zhaoxia Liu. Infinitely many solutions for some nonlinear scalar system of two elliptic equations[J]. J Math Anal Appl, 2011, 382:731-747.
  • 7Ali J and Shivaji R. Existence results for classes of Laplacian systems with sign-changing weight[J]. Appl Maths Letters, 2007, 20: 558-562.
  • 8Cuo Z M. Existence of the positive radial solutions for certain of quasilinear elliptic systems[J]. Chinese Ann Math, 1996, 5: 573-582.
  • 9Ph Clement, Manasevich R and Mitidieri E. Positive solutions for a quasilinear system via blow up[J]. Comm in Partial Diff Eqns, 1993, 12: 2071-2106.
  • 10Yang Z D. Existence of entire explosive positive radial solutions for a class of quasilinear ellipti: system[J]. J Math Anal Appl, 2003, 288: 768-783.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部