摘要
研究了R^N上一类含Sobolev临界指数的p-Laplacian拟线性椭圆方程组.借助位势函数的特性,利用变分方法,通过对Nehari流形进行分解,证明了当参数(λ,μ)属于R^2中某个子集时,该类方程组至少存在2个正解.
In this paper, we study the p-Laplacian quasilinear system involving Sobolev critical exponent in R^N. With the help of the properties of the weight function, by using variational method, and by using decomposition for Nehari manifold, we prove that the system exists at least two positive solutions when the pair of parameters (λ,μ) belongs to a certain subset in R2.
出处
《数学进展》
CSCD
北大核心
2015年第4期562-572,共11页
Advances in Mathematics(China)
基金
山西省高校科技研究开发项目(No.20111129)
长治学院科研项目(No.2011113)