期刊文献+

跨声速涡轮导叶吸力面换热特性数值研究 被引量:5

Numerical Study for Heat Transfer Characteristics on Suction Side of Transonic Nozzle Guide Vane
原文传递
导出
摘要 为了了解涡轮导叶吸力面在跨声速条件下的换热特性,采用数值模拟的方法,分析了出口马赫数对平面叶栅内流场与换热特性的影响,以及气膜出流对吸力面气膜冷却特性的影响。结果表明,跨声速条件下,斜激波导致的逆压梯度导致了吸力面层流边界层分离和转捩;亚声速条件下,吹风比从0.5增大至1.5时,转捩位置前移了约0.1倍弦长;跨声速条件的转捩位置随吹风比增大未发生变化,但是边界层分离现象被抑制,分离泡的尺寸明显变小。在吸力面小吹风比更容易获得更高的冷却效率;边界层的分离导致冷效率分布不同于亚声速条件,在分离区冷却效率迅速降低,在吹风比0.75时降低约50%。 In order to understand the heat transfer characteristic of nozzle guide vane's suction side at transonic condition,the effects of exit Mach number on flow field and heat transfer characteristic in plane cascade and the effects of cooling film outflow on film cooling characteristic on suction side have been investigated using CFD method. The results indicate that,the anti-pressure gradient induced by oblique shock wave leads to the laminar boundary layer separation and transition on the suction side at transonic condition. The position of boundary layer transition moves forward about 10% of chord length with the blowing ratios increasing from 0.5 to 1.5 at subsonic condition. The transition position is not changed with the blowing ratio increasing at transonic condition,but the separation is restrained and the size of separation bubble becomes smaller obviously. The higher cooling effectiveness is obtained at smaller blowing ratios on suction side. The cooling effectiveness distribution is different from that of subsonic condition because of the boundary layer separation. The cooling effectiveness decreases rapidly at the separated region. It decreases by nearly 50% when the blowing ratio is 0.75.
出处 《推进技术》 EI CAS CSCD 北大核心 2015年第7期1046-1053,共8页 Journal of Propulsion Technology
基金 国家重点基础研究发展规划资助项目(2013CB035702)
关键词 涡轮导叶 吸力面 换热 气膜冷却 斜激波 边界层分离 边界层转捩 Nozzle guide vane Suction side Heat transfer Film cooling Oblique shock wave Boundary layer separation Boundary layer transition
  • 相关文献

参考文献16

  • 1Carullo J S, Nssir S, Cress R D, et al. The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Iteat Transfer in a Transonic Cascade[ R]. ASME 2007-GT-27859.
  • 2Nadalih N, Karlsson M, Kinel[ M, et al. CI"D Based Sensitivity Analysis of Influencing Flow Parameters fr Cylindrical and Shaped Holes in Gas Turbine Vane [R] . ASME2012-GT-69023.
  • 3Gregory M L, Anil K T, Michael C S, et al. Heal Trans- fer Predictions of Film Cooled Stationary Turbine Air- fnils [ R]. ASME 2007-GT-27497.
  • 4张宗卫,朱惠人,刘聪,孟庆昆.全气膜冷却叶片表面换热系数和冷却效率研究[J].西安交通大学学报,2012,46(7):103-107. 被引量:20
  • 5朱惠人,马兰,许都纯,屈展.孔位对涡轮叶片表面气膜冷却换热系数的影响[J].推进技术,2005,26(4):302-306. 被引量:21
  • 6朱惠人,向安定,许都纯,刘松龄,郭文.涡轮叶片表面气膜冷却效率的实验研究[J].推进技术,2003,24(6):528-531. 被引量:17
  • 7朱惠人,许都纯,刘松龄.气膜孔形状对排孔下游冷却效率的影响[J].航空学报,2002,23(1):75-78. 被引量:55
  • 8Jiang H W, I-Ian J C. Effect of Film Hole Row Location on Film Effectiveness on a Gas Turbine Blade [ J] . Journal of Heat Transfer, 1996, 118: 327-333.
  • 9Denton J D, Xu L. The Trailing Edge Loss of Transonic Turbine Blades [J]. Journal of Turbomachinery, 1990, 112: 227-285.
  • 10Liglani P M, Saumweber C, Schulz A, et al, Shock Wave-Film Cooling Interactions in Transonic Flows [ J] . Journal of Turbomachinery, 2001, 123: 788-797.

二级参考文献20

  • 1戴丽萍,俞茂铮,王贤钢,侯平利.超临界汽轮机再热第一级叶片固粒冲蚀特性的数值分析[J].热能动力工程,2004,19(4):347-350. 被引量:11
  • 2何阿平,彭泽瑛.上汽-西门子型百万千瓦超超临界汽轮机[J].热力透平,2006,35(1):1-7. 被引量:41
  • 3刘响江.超超临界汽轮机固粒侵蚀和汽流激振分析[J].华北电力技术,2006(4):35-36. 被引量:4
  • 4徐红洲.气膜冷却的实验研究[M].西安:西北工业大学,1996..
  • 5Mehendale A B, Ekkad S V, Han J C. Mainstream turbulence effect on film effectiveness and heat transfer coefficient of a gas turbine blade with air and CO2 film injection[J]. Int. Journal of Heat and Mass Transfer, 1994,37 :2707 - 2714.
  • 6Jiang H W, Han J C. Effect of film hole row location on film effectiveness on a gas turbine blade [ J ]. ASME, Journal of Heat Transfer, 1996,118:327 - 333.
  • 7Ou S, Han J C. Mehendale A B, et al. Unsteady wake over a linear turbine blade cascade with air and CO2 film injection: (I) Effect on heat transfer coefficients [ J ].ASME. Journal of Turbomachinery , 1994, 116:721-729.
  • 8Mehendale A B, Han J C, Ou S, et al. Unsteady wake over a linear turbine blade cascade with air and CO2 film injection: (I) Effect on film effectiveness and heat transferdistributions [ J ]. ASME. Journal of Turbomachinery,1994, 116:730-737.
  • 9ZHU Hui-ren, XU Du-chun, GUO Tao, et al. Effects of film cooling hole shape on heat transfer[J]. Heat Transfer-Asian Research, 2004,33:73 - 80.
  • 10KAWAGISHI H, KAWASSAKI S. Protective design and boride coating against solid particle erosion of firststage turbine nozzles [C] // International Joint Power Generation Conference. New York, USA: ASME, 1990: 23-29.

共引文献99

同被引文献45

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部