期刊文献+

基于经典微扰理论的特征值灵敏度和不确定度分析 被引量:12

Eigenvalue Sensitivity and Uncertainty Analysis Based on Classical Perturbation Theory
下载PDF
导出
摘要 核数据不确定度作为组件/栅元计算不确定度的重要来源,备受重视和研究。本文采用经典微扰理论,推导输运计算中keff对于核数据的灵敏度系数和不确定度的计算方法。基于ENDF/B-Ⅶ.1制作多群协方差数据库,并根据所采用的组件输运求解程序的截面模型对分反应道协方差矩阵进行归并。开发灵敏度和不确定度分析程序COLEUS,对传统压水堆燃料栅元进行计算分析。数值结果表明,栅元计算的keff对235 U每次裂变中子产额的扰动最为敏感,238 U俘获截面对keff不确定度的贡献最大。目前的核数据的不确定度会给keff带来0.4%~0.5%的不确定度。 The uncertainty of nuclear data is being paid to more and more attention because it is one of the most important uncertainty sources in lattice calculation.The expressions of sensitivity and uncertainty of keff with respect to the cross sections were deduced based on the classical perturbation theory.A covariance library was made based on ENDF/B-Ⅶ.1,and the individual covariance matrices of cross section were combined according to the cross section model for lattice calculation in this work.A code COLEUS(calculation tool for evaluating uncertainty and sensitivity)was developed for the sensitivity and uncertainty analysis,and a traditional PWR fuel pin cell problem was calculated and analyzed.Numerical results indicate that keffof lattice calculation is the most sensitive to the perturbation of the average number of neutrons released per fission of 235 U,while the capture cross section of 238 U has the biggest contribution to the final uncertainty.The measuring accuracy of present nuclear data will bring an uncertainty about 0.4%-0.5%for keff.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2015年第7期1247-1253,共7页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(91226106)
关键词 微扰理论 协方差 灵敏度 不确定度 perturbation theory covariance sensitivity uncertainty
  • 相关文献

参考文献15

  • 1IVANOV K, AVRAMOVA M, KAMEROW S, et al. Benchmarks for uncertainty analysis in modelling (UAM) for the design, operation and safety analysis of LWRs, Vol I : Specification and support data for neutronics cases (Phase I ), Version 2.1 (final specifications)[R]. [S. 1. ] : OECD Nuclear Energy Agency, 2013.
  • 2WE1SBIN C R, MARABLE J H, LUCIUS J L,et al. Application of FORSS sensitivity and un- certainty methodology to fast reactor benchmark analysis[R]. Oak Ridge: Oak Ridge National Laboratory, 1976.
  • 3PUSA M. Incorporating sensitivity and uncer- tainty analysis to a lattice physics code with ap- plication to CASMO-4 [J].Annals of Nuclear Energy, 2012, 40(1): 153-162.
  • 4REARDEN B T, HOPPER C M, ELAM K R, et al. Applications of the TSUNAMI sensitivity and uncertainty analysis methodology[C]// ICNC2003. Tokai, Ibaraki, Japan: Japan Atomic Energy Research Institute, 2003.
  • 5TAMAGNO P, Van ROOIJEN W F G, TAKE- DA T, et al. Sensitivity analysis of Mon)u using ERANOS with JENDL-4. 0 [C] // PHYSOR 2012. Knoxville, Tennessee, USA: American Nuclear Society, 2012.
  • 6KODELI I. Multidimensional deterministic nu- clear data sensitivity and uncertainty code sys- tem: Method and application[J]. Nuclear Science and Engineering, 2001, 138(1): 45-66.
  • 7刚直,周培德.由截面不确定度引起积分参数keff不确定度一维分析程序开发[C]//第十二届反应堆数值计算与粒子输运学术会议.合肥:中国核学会,2008.
  • 8胡泽华,王佳,孙伟力,李茂生.基准模型k_(eff)对核数据的灵敏度分析及不确定度量化[J].原子能科学技术,2013,47(B06):312-317. 被引量:12
  • 9陈其昌.任意几何特征线方法及其在直接循环堆组件计算中的应用研究[D].西安:西安交通大学,2010.
  • 10WILLIAMS M L, BROADHEAD B L, PARKS C V. Eigenvalue sensitivity theory for resonance- shielded cross sections[J]. Nuclear Science and Engineering, 2001, 138(2) : 177-191.

二级参考文献14

  • 1SMITH D L. Probability, statistics, and data uncertainties in nuclear science and technology [R]. USA: American Nuclear Society, 1991.
  • 2SHIBATA K, IWAMOTO O, NAKAGAWA T et al. JENDL-4.0 : A new library for nuclear science and engineering[J]. J Nucl Sci Technol, 2010, 48(1): 1-30.
  • 3CHADWICK M B, HERMAN M, OBLOZIN- SKY P, et al. ENDF/B-Ⅶ. 1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data[J]. Nuclear Data Sheets, 2011, 112(12): 2 887.
  • 4WEISBIN C R, OBLOW E M, MARABLE J H,et al. Application of sensitivity and uncertainty methodology to fast reactor integral experiment analysis[J]. Nucl Sci Eng, 1978, 66(3): 307- 333.
  • 5SCALE: A modular code system for performing standardized computer analyses for licensing evaluations, NUREG/CR-0200, Rev. 5, ORNL/ NUREG/CSD-2/RS, Vol. Ⅰ-Ⅲ[R]. USA: ORNL, 1997.
  • 6CHILDS R L. SENI: A one-dimensional crosssection sensitivity and uncertainty module for criticality safety analysis, NUREGOCR-5719 (ORNLOTM-13738)[R]. USA: U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory. 1999.
  • 7REARDEN B T. Perturbation theory eigenvalue sensitivity analysis with monte carlo techniques [J]. NuclSciEng, 2004, 146: 367-382.
  • 8RIMPAULT G, PLISSON D, TOMMASI J, et al. The ERANOS code and data system for fast reactor neutronics analysis [C]// Proceedings of PHYSOR 2002 Conference. Seoul, Korea: American Nuclear Society, 2002.
  • 9KODELI I. Multidimensional deterministic nuclear data sensitivity and uncertainty code sys tern, method and application[J]. Nucl Sci Eng, 2001, 138(1): 45-66.
  • 10ENGLE W W, Jr. A user's manual for ANISN: A one-dimensional discrete ordinates transport code with anisotropic scattering, K-1693 [R]. USA: Computing Technology Center, Oak Ridge Gaseous Diffusion Plant, 1967.

共引文献11

同被引文献48

引证文献12

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部