期刊文献+

求解约束优化问题的萤火虫算法及其工程应用 被引量:18

Firefly algorithm for solving constrained optimization problems and engineering applications
下载PDF
导出
摘要 针对基本萤火虫算法存在收敛速度慢、易陷入局部最优等缺点,提出一种改进的萤火虫算法用于求解约束优化问题。该算法首先利用混沌序列初始化萤火虫的位置,引入动态随机局部搜索以加快算法的收敛速度;为了避免算法陷入局部最优,对当前全局最优解进行多样性变异操作。对几个数值优化和工程优化问题进行实验。研究结果表明:与其他启发计算法相比,该算法具有较强的寻优性能。 Firefly algorithm(FA) has a few disadvantages in the global searching, including slow convergence speed and high possibility of being trapped in local optimum. An improved FA was proposed to solve constrained optimization problems. Firstly, chaotic sequence was used to initiate firefly position. Secondly, dynamic random local search technique was introduced to improve speed of convergence; thirdly, a diversity mutation operator was given on the global optimum of each generation, thus the algorithm could effectively jump out of local minima. The experimental results and comparisons with other meta-heuristic methods using a set of numerical and engineering optimization problems show that the proposed algorithm is an effective method.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第4期1260-1267,共8页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61463009) 贵州省科学技术基金资助项目(黔科合J字[2013]2082号)~~
关键词 萤火虫算法 约束优化问题 动态随机局部搜索 工程优化 firefly algorithm constrained optimization problem dynamic random local search engineering optimization
  • 相关文献

参考文献18

  • 1Pan Q,Suganthan P,Wang L,et al.A differential evolution algorithm with self-adapting strategy and control parameters[J]. Computers & Operations Research,2011,38(1):394-408.
  • 2Long W,Liang X,Huang Y,et al.A hybrid differential evolution augmented Lagrangian method for constrained numerical and engineering optimization[J].Computer-Aided Design,2013,45(12):1562-1574.
  • 3Yang X.Firefly algorithms for multimodal optimization[C]// Proceedings of the International Conference on Stochastic Algorithms:Foundations and Applications.Beilin: Springer-Verlag,2009:169-178.
  • 4Pal S,Rai C,Singh A.Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems[J].International Journal of Intelligent Systems and Applications,2012,4(10):50-57.
  • 5Yang X,Hosseini S,Gandomi A.Firefly algorithm for solving non-convex economic dispatch problems with value loading effect[J].Applied Soft Computing,2012,12(3):1180-1186.
  • 6Gandomi A,Yang X,Alavi A.Mixed variable structural optimization using firefly algorithm[J].Computers and Structures,2011,89:2325-2336.
  • 7Kumbharana S,Pandey M.Solving traveling salesman problem using firefly algorithm[J].International Journal for Research in Science & Advanced Technologies,2013,2(2):53-57.
  • 8Liu B,Wang L,Jin Y,et al.Improved particle swarm optimization combined with chaos[J].Chaos,Solis & Fractals,2005,25(5):1261-1271.
  • 9Hamzacebi C.Improving genetic algorithms' performance by local search for continuous function optimization[J].Applied Mathematics and Computation,2008,196(1):309-317.
  • 10Wang Y,Cai Z,Zhou Ys et al.Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique[J].Structural Multidiscipline Optimization,2009,37(4):395-413.

同被引文献118

引证文献18

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部