期刊文献+

Fourier domain optical coherence tomography with ultralong depth range 被引量:2

Fourier domain optical coherence tomography with ultralong depth range
原文传递
导出
摘要 The depth ranges of typical implementations of Fourier domain optical coherence tomography (FDOCT), including spectral domain OCT (SDOCT) and swept source OCT (SSOCT), are limited to several millimeters. To extend the depth range of current OCT systems, two novel systems with ultralong depth range were developed in this study. One is the orthogonal dispersive SDOCT (OD-SDOCT), and the other is the recirculated swept source (R-SS) interferometer/OCT. No compromise between depth range and depth resolution is required in both systems. The developed OD-SDOCT system realized the longest depth range (over 100 mm) ever achieved by SDOCT, which is ready to be modified for depth-encoded parallel imaging on multiple sites. The developed R-SS interferometer achieved submicron precision within a depth range of 30mm, holding potential in real-time contact-free on-axis metrology of complex optical sys- tems. The depth ranges of typical implementations of Fourier domain optical coherence tomography (FDOCT), including spectral domain OCT (SDOCT) and swept source OCT (SSOCT), are limited to several millimeters. To extend the depth range of current OCT systems, two novel systems with ultralong depth range were developed in this study. One is the orthogonal dispersive SDOCT (OD-SDOCT), and the other is the recirculated swept source (R-SS) interferometer/OCT. No compromise between depth range and depth resolution is required in both systems. The developed OD-SDOCT system realized the longest depth range (over 100 mm) ever achieved by SDOCT, which is ready to be modified for depth-encoded parallel imaging on multiple sites. The developed R-SS interferometer achieved submicron precision within a depth range of 30mm, holding potential in real-time contact-free on-axis metrology of complex optical sys- tems.
出处 《Frontiers of Optoelectronics》 CSCD 2015年第2期163-169,共7页 光电子前沿(英文版)
关键词 optical coherence tomography (OCT) vir-tually-imaged phased array (VIPA) orthogonal dispersion swept source light recirculation parallel imaging dimen-sional metrology optical coherence tomography (OCT), vir-tually-imaged phased array (VIPA), orthogonal dispersion,swept source, light recirculation, parallel imaging, dimen-sional metrology
  • 相关文献

参考文献10

  • 1Wang Z, Yuan Z, Wang H, Pan Y. Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique. Optics Express, 2006, 14(16): 7014-7023.
  • 2Huber R, Wojtkowski M, Taira K, Fujimoto J, Hsu K. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Optics Express, 2005, 13(9): 3513-3528.
  • 3Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher A F. Full range complex spectral optical coherence tomography technique in eye imaging. Optics Letters, 2002, 27(16): 1415-1417.
  • 4Wang K, Ding Z, Zeng Y, Meng J, Chen M. Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact. Optics Express, 2009, 17(19): 16820-16833.
  • 5Davis A M, Choma M A, Izatt J A. Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal. Journal of Biomedical Optics, 2005, 10(6): 064005.
  • 6Bajraszewski T, Wojtkowski M, Szkulmowski M, Szkulmowska A, Huber R, Kowalczyk A. Improved spectral optical coherence tomography using optical frequency comb. Optics Express, 2008, 16(6): 4163—4176.
  • 7Wang C, Ding Z, Mei S, Yu H, Hong W, Yan Y, Shen W. Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography. Optics Letters, 2012, 37(21): 4555-4557.
  • 8Bao W, Ding Z, Li P, Chen Z, Shen Y, Wang C. Orthogonal dispersive spectral-domain optical coherence tomography. Optics Express, 2014, 22(8): 10081-10090.
  • 9Shen Y, Ding Z, Yan Y, Wang C, Yang Y, Zhang Y. Extended rangephase-sensitive swept source interferometer for real-time dimensional metrology. Optics Communications, 2014, 318: 88-94.
  • 10Hendargo H C, Bower B A, Reinstein A S, Shepherd N, Tao Y K, Izatt J A. Depth-encoded spectral domain phase microscopy for simultaneous multi-site nanoscale optical measurements. Optics Communications, 2011, 284(19): 4847^1851.

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部