期刊文献+

基于随机退化数据建模的设备剩余寿命自适应预测方法 被引量:10

A Stochastic Degradation Modeling Based Adaptive Prognostic Approach for Equipment
下载PDF
导出
摘要 针对现有剩余寿命预测研究中需要多个同类设备历史数据离线估计模型参数的问题,本文提出了一种基于退化数据建模的服役设备剩余寿命自适应预测方法.该方法,利用指数随机退化模型来建模设备的退化过程,基于退化监测数据运用Bayesian方法更新模型的随机参数,进而得到剩余寿命的概率分布函数及点估计.区别于现有方法,本文方法基于设备到当前时刻的监测数据,利用期望最大化算法对模型中的非随机未知参数进行在线估计,由此无需多个同类设备历史数据.最后,通过数值仿真与实例分析,验证了本文方法在剩余寿命预测时的有效性. Current prognostic studies are usually based on historical degradation data,which are collected off line from different devices in a population with the same type. However,such data are not always available in practice. Toward this end,this paper presents a degradation modeling based adaptive remaining useful life prediction method for equipments in service. In the presented method,we use an exponential-like stochastic degradation model to represent the degradation process of equipments. Then,based on the monitored data during the degradation process,Bayesian approach is applied to update the stochastic parameters in the model,so the probability distribution of the predicted remaining useful life is derived as well as its point estimation. Differing from current studies,all unknown non-stochastic parameters in the model are estimated by expectation maximization algorithm,without requiring historical degradation data of multiple devices. Finally,numerical simulations and case study results substantiate the superiority of the presented method in predicting the remaining useful life.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第6期1119-1126,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61473094 No.61174113) 广东省战略性新兴产业核心技术攻关(No.2012A090100019) 广东省普通高校特色创新项目(No.2014631041)
关键词 寿命预测 退化 Bayesian方法 期望最大化 lifetime prognosis degradation Bayesian method expectation maximization
  • 相关文献

参考文献23

  • 1Si X S, Wang W B, Hu C H, et al. Remaining useful life esti- mation-A review on the statistical data driven approaches[ J ]. European Journal of Operational Research, 2011,213( 1 ): 1 - 14.
  • 2Meeker W Q, Escobar L A. A review of recent research and current issues in accelerated testing[ J]. International Statistical Review, 1993,61 ( 1 ) : 147 - 168.
  • 3司小胜,胡昌华,周东华.带测量误差的非线性退化过程建模与剩余寿命估计[J].自动化学报,2013,39(5):530-541. 被引量:71
  • 4Gertsbackh I B, Kordonskiy K B. Models of Failure[M]. New York: Springer-Verlag, 1969.
  • 5Nelson W. Accelerated Testing: Statistical Models, Test Plans and Data Analyses[M]. New York. Wiley, 1990.
  • 6Lu C J, Meeker W Q. Using degradation measures to estimate a time-to-failure dislribution [ J ]. Technometrics, 1993, 35 (2) : 161 - 174.
  • 7周东华,魏慕恒,司小胜.工业过程异常检测、寿命预测与维修决策的研究进展[J].自动化学报,2013,39(6):711-722. 被引量:90
  • 8Gebraeel N Z,Lawley M A, Li R, et al. Residual-life distribu- tions from component degradation signals:A Bayesian approach [ J] .IEEE Transactions,2005,37(6):543 - 557.
  • 9N Gebraeel. Sensory-updated residual life distributions for com- ponents with exponential dewadation patterns[ J ]. IEEE, Trans- actions on Automation Science and Engineering, 2006, 3 (4) : 382 - 393.
  • 10Gebraeel N Z, Elwany A, Pan J. Residual life predictions in the absence of prior degradation knowledge [ J]. IEEE Trans- actions on Reliability, 2009,58 ( 1 ) : 106 - 117.

二级参考文献83

共引文献188

同被引文献63

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部