摘要
利用机载中空纤维膜分离性能测量台架,针对分离性能随引气压力、引气温度、飞行高度等因素的变化规律开展了实验研究;并采用所获得的实验数据作为训练及验证样本,应用人工神经网络预测技术分析了该型膜的性能.研究结果显示:1所建立的数学模型可实现对中空纤维膜分离性能的有效预测;2制氮体积分数与量纲一制氮量成反比,当要求制氮体积分数较高时,其量纲一制氮量下降,制氮效率降低;3在一定制氮体积分数下,制氮量随引气温度、引气压力的增加而增加;制氮效率随引气压力的增加而增加,但随引气温度的增加而减小;4在飞行高度增加的情况下,量纲一制氮量和制氮效率都增加,而制氮体积分数的影响随飞行高度增加而减小.
Based on a test apparatus of the on-board hollow fiber membrane separation performance,the separation performance was experimentally investigated with variation of the bleed air pressure,bleed air temperature,flight altitude and other factors;the experimental data were applied into the artificial neural network prediction technology as the training and validation samples,so as to predict the performance of this membrane.The results show that:(1)the established mathematical model can effectively predict the separation performance of hollow fiber membrane;(2)the volume fraction of nitrogen-enriched air is inversely proportional to non-dimensional flow rate;so when the volume fraction of nitrogenenriched air increases,the flow rate and efficiency of nitrogen-enriched air decrease;(3)under a given volume fraction of nitrogen-enriched air,non-dimensional flow rate of nitrogenenriched air increases with bleed air temperature and bleed air pressure increasing;the efficiency of nitrogen-enriched air increases with the bleed air pressure increasing,but decreases with bleed air temperature increasing;(4)when the flight altitude increases,the non-dimensional flow rate and efficiency of nitrogen-enriched air increase,and the influence of volumefraction of nitrogen-enriched air decreases with the growing flight altitude.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2015年第4期800-806,共7页
Journal of Aerospace Power
基金
航空科学基金(20122852038
20132852040)
国家自然科学基金(50906066)
江苏高校优势学科建设工程
关键词
机载惰化系统
中空纤维膜
人工神经网络
分离性能
引气
on-board inerting system
hollow fiber membrane
artificial neural network
separation performance
bleed air