期刊文献+

不同飞行状态下固体火箭发动机尾喷焰数值研究 被引量:11

Numerical study on the plumes of solid rocket motor under various flight conditions
原文传递
导出
摘要 为了研究飞行状态对固体火箭发动机尾喷焰的影响,建立了含化学反应项和组分输运项的N-S(Navier-Stokes)控制方程,并采用MUSCL(monotonic upstream-centered scheme for conversation laws)Roe格式的有限体积法进行求解.在此基础上,结合热力计算结果对某固体火箭发动机在不同飞行状态下的化学反应流和单一组分流进行仿真计算.结果表明:初始倾角和第一马赫波节长度随飞行高度的增加而增大,随来流马赫数的升高而减小.同单一组分流相比,化学反应流对第一马赫波节的影响较初始倾角显著.射流轴线温度因飞行状态的不同有较大涨落差异.初始倾角、第一马赫波节由来流总压决定,射流轴线温度由激波结构、复燃效应、来流条件等因素共同决定. To analyze the behaviors of solid rocket motor plumes under different flight conditions,the finite volume method based on the MUSCL(monotonic upstream-centered scheme for conversation laws)Roe format was employed after establishment of governing equations including Navier-Stokes(N-S)equation and chemical reaction terms.Combined with the results from thermal calculations,chemical reaction flow and single species flow were numerically simulated for a solid rocket motor under various flight conditions.Results show that both the initial angle of the jet and the length of the first Mach shock cell rise with the increase of altitudes and the decrease of the incoming Mach numbers.The effect of the length of the first Mach shock cell is more significant than initial angle of the jet in chemical reaction flow than that of single species flow.Centerline temperature with various flight conditions is much different.The initial angle of the jet and the length of the first Mach shock cell are determined by incoming total pressure and the centerline temperature determined by the structure of shock,afterburning effect,and incoming conditions.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2015年第7期1745-1751,共7页 Journal of Aerospace Power
基金 国家自然科学基金(51306019)
关键词 固体火箭发动机 尾喷焰 化学反应 定常流 初始倾角 马赫波节 solid rocket motor plumes chemical reaction steady flow initial angle of the jet Mach shock cell
  • 相关文献

参考文献15

二级参考文献39

  • 1祖国君,蔡国,朱定强.喷管流场和羽流场的N-S数值模拟[J].推进技术,1995,16(5):1-6. 被引量:7
  • 2李东霞,徐旭,蔡国飙,张振鹏.火箭发动机气体-颗粒两相流双流体模型研究[J].固体火箭技术,2005,28(4):238-243. 被引量:16
  • 3[2]Sanford Gordon,Bonnie J,McBride.Computer program for calculation of complex chemical equilibrium compositions[J].Rocket Performance,Incident and Reflected Shocks,and Chapman-Jouguet Detonations,NASA SP-273.
  • 4[6]Jensen D E and Jones G A.Reaction Rate coefficients for Flame Calculations,Combustion and Flame,1978,32:1-34.
  • 5[7]Wang J C T,Widhopf G F.A High-resolution TVD finite volume scheme for the euler equations in conservation form[J].Journal of Computational Physics,1989,84:145-173.
  • 6Arthur H Lefebvre. Gas Turbine Combustion [M]. Taylor and Prancis, New York, NY, 1999.
  • 7Experimental Data from Sandia State Laboratory in USA [EB/OL]. [2009-05 16]. http://www.ca.sandia.gov/TNF /pilotedjet.html.
  • 8T H Shih, W W Liou, A Shabbir, et al. A New k- Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation [J]. Computers Fluids, 1995, 24(3): 227-238.
  • 9Pope SB. PDF Methods for Turbulent Reactive Flow [J]. Prog. Energy Combust Sci., 1985, 11(2): 119-192.
  • 10ZHANG Hongmei. Radiative Properties and Radiative Heat Transfer Calculations for High Temperature Combustion Gases [D]. The Pennsylvania State University, 2002.

共引文献105

同被引文献72

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部