摘要
In visible light communication, orthogonal frequency division multiplexing (OFDM) is an effective approach to improve the system speed. However, the nonlinearity of the light-emitting diode (LED) suppresses the trans- mission performance. The low-frequency part of the transmitted signal from LED suffers more from nonlinearity. Therefore, a pre-equalization scheme which suppresses the low frequency part of the OFDM signal and enhances the high frequency part can decrease the impact of LED nonlinearity. The experimental results show that the bit-error rate performance is largely enhanced by the pre-compensation.
In visible light communication, orthogonal frequency division multiplexing (OFDM) is an effective approach to improve the system speed. However, the nonlinearity of the light-emitting diode (LED) suppresses the trans- mission performance. The low-frequency part of the transmitted signal from LED suffers more from nonlinearity. Therefore, a pre-equalization scheme which suppresses the low frequency part of the OFDM signal and enhances the high frequency part can decrease the impact of LED nonlinearity. The experimental results show that the bit-error rate performance is largely enhanced by the pre-compensation.
基金
supported in part by the National 973 Program of China(No.2013CB329205)
the National Natural Science Foundation of China(No.61401032)
the National 863 Program of China(No.2013AA013601)