期刊文献+

结合SLIC超像素和DBSCAN聚类的眼底图像硬性渗出检测方法 被引量:8

Fundus Image Hard Exudates Detection Based on SLIC Superpixels and DBSCAN Clustering
下载PDF
导出
摘要 为自动检测出眼底图像中的硬性渗出,结合简单线性迭代聚类(SLIC)超像素分割算法和基于密度的聚类算法(DBSCAN),提出一种对眼底图像硬性渗出的检测方法.首先,采用SLIC超像素分割算法对彩色眼底图像进行过分割;然后,采用DBSCAN对上述分割得到的超像素进行聚类,形成簇;最后,分割出目标图像,并选用标准糖尿病视网膜病变数据库(DIARETDB0和DIARETDB1)的眼底图像验证上述组合算法的可行性.实验结果表明:算法能够快速、可靠地检测出眼底图像中的硬性渗出,具有可直接对彩色图像进行分割、特征提取的特点. In order to detect the hard exudates in fundus images automatically,this paper presented a hard exudates detection method which combines simple linear iterative clustering(SLIC)superpixels and DBSCAN clustering algorithm to detect the Harde exudates.Firstly,an over-segmentation image was formed by algorithm of the SLIC superpixels.Next the superpixels obtained were processed using the DBSCAN method,so that the final segmentation could be generated from the clusters of superpixels.The fundus image of the standard Diabetic Retinopathy datasets of DIARETDB0 and DIARETDB1were chosen to verify the feasibility of the method proposed.The experimental results showed that the algorithms can detect exudates effectively and reliably.Moreover,the method can be directly applied to color image segmentation and feature extraction.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2015年第4期399-405,共7页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61203369 61204122) 福建省自然科学基金资助项目(2011J01351) 福建省科技计划重点项目(2013H0029) 福建省泉州市科技计划项目(2013Z33)
关键词 图像分割 超像素 硬性渗出 糖尿病视网膜病变 简单线性迭代聚类 基于密度的聚类算法 image segmentation superpixels hard exudates diabetic retinopathy simple linear iterative clustering density-based clustering method
  • 相关文献

参考文献16

  • 1RAM K,SIVASWAMY J. Multi-space clustering for segmentation of exudates in retinal color photographs[C]// 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis: IEEE Press, 2009 : 1437-1440.
  • 2NAGY B, ANTAL B, HAJDU A. Image database clustering to improve microaneurysm detection in color fundus im- ages[C]//25th International Symposium on Computer-Based Medical Systems. Rome: IEEE Press, 2012:1-6.
  • 3RANAMUKA N G, MEEGAMA R G N. Detection of hard exudates from diabetic retinopathy images using fuzzy logic[J]. IET Image Processing, 2013,7(2) : 121-130.
  • 4GIANCARE~ L, MERIAUDEAU F, KARNOWSKI T P, et al. Automatic retina exudates segmentation without a manually labelled training set[C] ff International Symposium on Biomedical Imaging. Chicago: IEEE Press, 2011.. 1396-1400.
  • 5刘芳,代钦,石祥滨,刘进立.基于超像素的快速MRF红外行人图像分割算法[J].计算机仿真,2012,29(10):26-29. 被引量:4
  • 6ACHANTA R, SHAJI A,SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.
  • 7杨静,高嘉伟,梁吉业,刘杨磊.基于数据场的改进DBSCAN聚类算法[J].计算机科学与探索,2012,6(10):903-911. 被引量:21
  • 8陈刚,刘秉权,吴岩.一种基于高斯分布的自适应DBSCAN算法[J].微电子学与计算机,2013,30(3):27-30. 被引量:24
  • 9于亚飞,周爱武.一种改进的DBSCAN密度算法[J].计算机技术与发展,2011,21(2):30-33. 被引量:35
  • 10赵文,夏桂书,苟智坚,闫振兴.一种改进的DBSCAN算法[J].四川师范大学学报(自然科学版),2013,36(2):312-316. 被引量:17

二级参考文献75

共引文献109

同被引文献65

引证文献8

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部