期刊文献+

考虑地质及开发因素约束的三角形井网优化 被引量:9

Triangulated well pattern optimization constrained by geological and production factors
下载PDF
导出
摘要 在油气田开发中,影响原油采收率的因素有多种,除了油藏自身的渗透率场分布以及边界、断层、裂缝等地质因素外,还要考虑原始井位约束、布井方式、井网单元结构、注采量等开发因素的影响。在借鉴网格剖分理论中的Delaunay三角网格剖分及Voronoi图的基础上,改进Delaunay三角网格剖分只能约束采油井的局限性,使之还能约束注水井,实现在断层、生产井和注水井等约束条件下的三角形井网构建,并使用最优化方法中的PSO算法实现矢量井网的优化。结果表明,井网可以根据地质情况与油水的不同分布,以及各井网单元的尺度、方位,实现变尺度、变密度的井网布局优化。同时,考虑单元内渗透率的各向异性,通过调节注水井的井位可以实现更好的均匀驱替效果。 In the process of oil and gas field development, a variety of factors can have a great effect on oil recovery. Apart from the geological factors such as permeability distribution, reservoir boundaries, faults and fractures, the production factors, such as the constraints of well location and spacing, well structure and the balance of injection and production are also very important to oil recovery. In this paper, based on the theory of Delaunay and the Voronoi graph, an improved Delaunay triangulation method was used, in which a triangulated well pattern can be constructed under the constraints of fault, production and injec- tion wells to restrain not only injection wells but also production wells. In using an optimization method of PSO, vector well pat- tern can be further optimized. Well pattern can be adjusted according to the geological conditions and the distribution of oil and water, in terms of unit pattern size and well orientation, to achieve better well pattern optimization. Meanwhile, in considera- tion of permeability anisotropy, adjusting the locations of injection wells can obtain better oil recovery effect.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第4期111-118,共8页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家科技重大专项(2011ZX05024-002-008 2011ZX05005-006-005) 国家自然科学基金项目(61104170 61004095) 国家'863'重大项目(2013AA09A215) 长江学者和创新团队(IRT1294)
关键词 三角形井网 矢量井网 粒子群优化算法 井网优化 triangle well pattern vector well pattern particle swarm optimization well pattern optimization
  • 相关文献

参考文献13

  • 1邴绍献,李志学,王兴科,蔡建宏,赵小军.基于储量价值的油田井网密度优化模型及其应用[J].西安石油大学学报(自然科学版),2008,23(6):46-50. 被引量:5
  • 2LIU N, JALALIi Y. Closing the loop between reservoir modeling and well placement and positioning [ R ]. SPE 98198, 2006.
  • 3BANGERTH W, KLIE H, WHEELER M F, et al. On optimization algorithms for the reservoir oil well placement problem[ J]. Computational Geoseienees, 2006,10 (3) :303-319.
  • 4张凯,姚军,刘顺,段友智,陈小飞,赵政权.埕岛油田6A+B区块油藏动态调控[J].中国石油大学学报(自然科学版),2009,33(6):71-76. 被引量:5
  • 5GUYAGULER B, HORNE R N. Uncertainty assessment of well placement optimization[ R]. SPE 71625, 2001.
  • 6NORRENA K P, DEUTSCH C C. Automatic determina- tion of well placement subject to geostatistical and eco- nomic constraints[ R]. SPE 75996, 2002.
  • 7姚军,魏绍蕾,张凯,蒋金奎.考虑约束条件的油藏生产优化[J].中国石油大学学报(自然科学版),2012,36(2):125-129. 被引量:6
  • 8MONTES G, REPSOL F, BARTOLOME P, et al. The use of genetic agorithm and quality map [ J ]. SPE Latin America & Caribbean Petroleum Engineering Conference, 2001,5 - 1-10.
  • 9BECKNER B L, SONG X. Field Development planning using simulated annealing--optimal economic well sched- uling and placement[ R]. SPE 30650, 1995.
  • 10ZHANG K, LI G M, ALBERT C, et al. Optimal well placement using an adjoint gradient [ J ]. Journal of Pe- troleum Science and Engineering, 2010,73 ( 3/4 ) : 220- 226.

二级参考文献50

共引文献82

同被引文献98

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部