期刊文献+

基于结构投影非负矩阵分解的协同过滤算法 被引量:12

Collaborative filtering algorithm based on structured projective nonnegative matrix factorization
下载PDF
导出
摘要 针对在协同过滤算法中,传统矩阵分解技术在降维过程中会破坏数据相邻结构的问题,提出基于结构投影非负矩阵分解的协同过滤算法(CF-SPNMF).该算法包含离线学习和在线搜索2个阶段.在离线学习阶段,通过对用户评分矩阵的投影非负矩阵分解,同时保留用户特征的聚类结构,得到低维的用户潜在兴趣因子.在线搜索阶段,将用户潜在兴趣因子进行余弦相似性匹配,发现目标用户与训练样本用户之间兴趣最相似的邻域集合.在实际数据集上的实验结果表明,提出的CF-SPNMF算法与单纯使用矩阵分解和单纯在原评分矩阵上进行用户聚类的推荐算法相比,能够更有效地预测用户实际评分. In collaborative filtering algorithm,the classical matrix factorization may destroy the adjacent structures among data points from high dimension to low dimension.A novel collaborative filtering algorithm based on structured projective nonnegative matrix factorization(CF-SPNMF)was proposed in order to overcome the problem.The algorithm contains both offline learning and online searching.In the offline learning stage,projective nonnegative matrix factorization was applied to obtain the low dimensional latent factors of user preference without changing the intrinsic structure of users'cluster.In the online searching stage,cosine similarity was used to measure the similarity between the target user and training users based on the latent factors inferred in the offline stage.Then the most similar neighbor set was further found.The extensive experiments on real-world data set demonstrate that the proposed CF-SPNMF achieves better rating prediction performance than traditional methods using either matrix factorization or users clustering in original rating matrix.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第7期1319-1325,共7页 Journal of Zhejiang University:Engineering Science
基金 浙江省自然科学基金资助项目(Y1101359) 国家科技支撑计划资助项目(2011BAD24B03)
关键词 协同过滤 投影非负矩阵分解 相邻结构 聚类 collaborative filtering projective nonnegative matrix factorization adjacent structure clustering
  • 相关文献

参考文献1

二级参考文献11

  • 1Lee D D, Seung H S. Learning the parts of objects by non-nega- tive matrix faetorization[J]. Nature, 1999,401(6755) : 788-791.
  • 2Berry M W, Browne M, Langville A N, et al. Algorithms and ap- plications for approximate non-negative matrix factorization[J].Computational Statistics &Data Analysis, 2007,52 : 155-173.
  • 3Yuan Zhi-jian,Oja E. Projective nonnegative matrix faetorization for image compression and feature extraction[C]//Proceedings of the fourteenth Scandinavian Conference on Image Analysis. 2005 : 333-342.
  • 4Lee D D, Seung H S. Algorithms for non-negative matrix faetori- zation[J]. Advances in Neural Information Processing Systems, 2001,13 : 556-562.
  • 5Yoo J, Choi S. Orthogonal non-negative matrix tri-factorization for co-clustering: multiplicative updates on stiefel manifolds[J]. Information Processing & Management, 2010,46(5) : 559-570.
  • 6Li S Z, Hou Xirrwen, Zhang Hong-jiang, et al.Learning spatially localized, parts-based representation[C] // Proceedings of the /NEE conference on Computer Vision and Pattern Recognition, 2001 : 1-6.
  • 7Li Zhao, Wu Xin-dong,Peng Hong. Non-negative matrix factori- zation on orthogonal subspaee[J]. Pattern Recognition Letters, 2010,31 (9) .. 905-911.
  • 8Bueiu I, Nafornita I. Non-negative matrix factorization methods for face recognition under extreme lighting variations[C]//Pro- eeedings of the International Symposium on Signals, Circuits and Systems. 2009:125-128.
  • 9Yang Zhi-rong, Yuan Zhi-jian, Laaksonen J. Projective nonnega- tire matrix factorization with applications to facial image pro- cessing[J]. Intenational Journal of Pattern Recognition and Ar- tificial Intelligence, 2007,21(8) : 1353-1362.
  • 10李乐,章毓晋.基于线性投影结构的非负矩阵分解[J].自动化学报,2010,36(1):23-39. 被引量:22

共引文献6

同被引文献105

  • 1中文互联网数据资讯中心.WeAreSocial:2015年全球移动&社交报告精华解读[EB/0L]. (2015-02-02)[2015 - 10 - 19 ]. http: // www. 199it. com/archives/326417.html.
  • 2AKCORA C G,CARMINATI B,FERRARI E. User simi-larities on social networks [ J] . Social Network Analysisand Mining, 2013,3(3) :475-495.
  • 3DONG Y X, TANG J, WU S, et al. Link prediction andrecommendation across heterogeneous social networks[ C]// Proceedings of the 12th International Conference onData Mining. Chicago: IEEE, 2012: 181-190.
  • 4AGARWAL V, BHARADWAJ K K. A collaborative filte-ring framework for friends recommendation in social net-works based on interaction intensity and adaptive usersimilarity [ J ]. Social Network Analysis and Mining,2013, 3(3):359-379.
  • 5LEE D D, SEUNG H S. Learning the parts of objects bynon-negative matrix factorization [J]. Nature, 1999, 401(10):788-791.
  • 6LEE D D, SEUNG H S. Algorithms for non-negative ma-trix factorization[C] //Proceedings of 2000 Annual Con-ference on Neural Information Processing Systems. Cam-bridge, MA: MIT Press, 2000:556-562.
  • 7LIU H W, LI X L, ZHENG X Y. Solving non-negativematrix factorization by alternating least squares with amodified strategy [ J ] . Data Mining and Knowledge Dis-covery, 2013, 26(3):435-451.
  • 8LUO X, ZHOU M C, XIA Y N, et al. An efficient non-negative matrix factorization-based approach to collabora-tive filtering for recommender systems [ J ]. IEEE Tran-sactions on Industrial Informatics, 2014, 10(2) : 1273 -1284.
  • 9KANNAN R, ISHTEVA M, PARK H. Bounded matrixfactorization for recommender system [ J]. Knowledge andInformation Systems, 2014,39(3):491-511.
  • 10ZHANG Y, YEUNG D Y. Overlapping community detec-tion via bounded nonnegative matrix tri -factorization [ C ]// Proceedings of the 18th ACM International Conferenceon Knowledge Discovery and Data Mining. New York:ACM, 2012:606-614.

引证文献12

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部