期刊文献+

On the Lie Algebras, Generalized Symmetries and Darboux Transformations of the Fifth-Order Evolution Equations in Shallow Water 被引量:2

On the Lie Algebras, Generalized Symmetries and Darboux Transformations of the Fifth-Order Evolution Equations in Shallow Water
原文传递
导出
摘要 By considering the one-dimensional model for describing long, small amplitude waves in shallow water, a generalized fifth-order evolution equation named the Olver water wave (OWW) equation is investigated by virtue of some new pseudo-potential systems. By introducing the corresponding pseudo-potential systems, the authors systematically construct some generalized symmetries that consider some new smooth functions {Xiβ}β=1,2…,N^i=1,2…,n depending on a finite number of partial derivatives of the nonlocal variables vβ and a restriction i,α,β∑( ξi/ vβ)^2+( ηα/ vβ)^2≠0,ie.,i,α,β∑( ξi/ vβ)^2≠0. Furthermore, i,a,B i,a,~ the authors investigate some structures associated with the Olver water wave (AOWW) equations including Lie algebra and Darboux transformation. The results are also extended to AOWW equations such as Lax, Sawada-Kotera, Kaup-Kupershmidt, It6 and Caudrey-Dodd-Cibbon-Sawada-Kotera equations, et al. Finally, the symmetries are ap- plied to investigate the initial value problems and Darboux transformations.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第4期543-560,共18页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11301527,11371361) the Fundamental Research Funds for the Central Universities(No.2013QNA41) the Construction Project of the Key Discipline of Universities in Jiangsu Province During the 12th FiveYear Plans(No.SX2013008)
关键词 Generalized symmetries Darboux transformations Analytical solutions Darboux变换 广义对称性 发展方程 Sawada-Kotera方程 浅水 五阶 李代数 一维模型
  • 相关文献

参考文献38

  • 1Anderson, I. M., Kamran, N. and Olver, P. J., Internal, external and generalized symmetries, Adv. Math., 100, 1993, 53-100.
  • 2Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York, 1989.
  • 3Bluman, G. W., Temuerchaolu and Anco, S., New conservation laws obtained directly from symmetry action on a known conservation law, J. Math. Anal. Appl., 322, 2006~ 233-250.
  • 4Bluman, G. W., Tian, S. F. and Yang, Z. Z., Nonclassical analysis of the nonlinear Kompaneets equation, J. Eng. Math., 84, 2014, 87-97.
  • 5Chern, S. S. and Tenenblat, K., Pseudo-spherical surfaces and evolution equations~ Stud. Appl. Math., 74(1), 1986, 55 83.
  • 6Chen, Y. and Hu, X. R., Lie symmetry group of the nonisospectral Kadomtsev-Petviashvili equation, Z. Naturforsch A., 62(a), 2009, 8 14.
  • 7Dodd, R. K. and Gibbon, J. D., The prolongation structure of a higher order Korteweg-de Vries equation, Proc. R. Soc. Lond. A, 358, 1978, 287 296.
  • 8Fan, E. G., Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A: Math. Gen., 35, 2002, 6853-6872.
  • 9Galas, F., New nonlocal symmetries with pseudopotentials, J. Phys. A: Math. Gen., 25, 1992, L981-L986.
  • 10Guthrie, G. A. and Hickman, M. S., Nonlocal symmetries of the KdV equation, J. Math. Phys., 26, 1993, 193-205.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部