期刊文献+

基于物理模型的单幅图像对比复原算法 被引量:3

Contrast restoration algorithm for single image based on physicals model
下载PDF
导出
摘要 基于图像复原的去雾算法中参数的估计容易造成去雾图像场景信息的丢失,对此,提出一种图像去雾新算法。在暗通道先验的基础上,通过对大气散射模型的分析,总结出雾气分布对暗通道图像的影响,并依此对外景图像进行加雾操作,利用加雾后的参考图像与外景图像中各点的景深关系完成透射率的估计,进而达到去雾目的。算法利用物理模型和多幅图像实现参数的估计,能够更好地保留场景信息。实验结果表明,该算法不仅去雾效果优于对比算法,在处理速度上也有明显改善。 Concerning that the parameter estimation in defogging algorithms based on image restoration is easy to cause the loss of scene information, a new defogging algorithm for single image was proposed. On the basis of the dark channel prior method, the atmospheric scattering model was analyzed and then the influence to dark channel image caused by fog distribution was summarized, which is the basis for adding fog to the outdoor images. The transmittance was estimated through the field depth relationship between the fog added reference image and the outdoor image to defogging. The algorithm used physical model and multiple images to complete the estimation of relevant parameters and had a better result in retaining scene information. The experimental results show that the proposed algorithm is more effective than the comparison algorithms, and its processing speed is also improved significantly.
出处 《计算机应用》 CSCD 北大核心 2015年第8期2291-2294,2300,共5页 journal of Computer Applications
基金 甘肃省科技厅自然科学基金资助项目(1310RJZA050) 甘肃省财政厅基本科研业务费资助项目(214138)
关键词 图像去雾 物理模型 图像加雾 透射率 图像复原 image defogging physicals model image plus fog transmittance image restoration
  • 相关文献

参考文献14

  • 1祝培,朱虹,钱学明,李晗.一种有雾天气图像景物影像的清晰化方法[J].中国图象图形学报(A辑),2004,9(1):124-128. 被引量:115
  • 2詹翔,周焰.一种基于局部方差的雾天图像增强方法[J].计算机应用,2007,27(2):510-512. 被引量:45
  • 3芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 4NARASIMHAN S G, NAYER S K. Contrast restoration of weather degraded images [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 5FATTYAL R. Single image dehazing [ J]. ACM Transactions on Graph- ics, 2008, 27(3): 721-729.
  • 6TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image [ C]//Proceedings of the 12th International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2009:2201-2208.
  • 7HE K, SUN J, TANG X. Single image haze removal using dark chan- nel prior [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12) : 2341 - 2353.
  • 8HE K, SUN J, TANG X. Guided image filtering [ J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2013, 35(6) : 1397 - 1409.
  • 9王一帆,尹传历,黄义明,王洪玉.基于双边滤波的图像去雾[J].中国图象图形学报,2014,19(3):386-392. 被引量:57
  • 10王伟鹏,戴声奎.结合图像融合与分割的快速去雾[J].中国图象图形学报,2014,19(8):1155-1161. 被引量:9

二级参考文献48

  • 1黄凯奇,吴镇扬,王桥.色彩恒常性在彩色图像增强中的应用[J].应用科学学报,2004,22(3):322-326. 被引量:10
  • 2曹聚亮,吕海宝,李冠章.基于自适应局部灰度修正的直方图均衡算法[J].红外与激光工程,2004,33(5):513-515. 被引量:25
  • 3李学明.基于Retinex理论的图像增强算法[J].计算机应用研究,2005,22(2):235-237. 被引量:66
  • 4王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 5周宏潮,王正明,赵敏.基于全局信息的图像增强组合方法[J].数据采集与处理,2005,20(4):432-435. 被引量:1
  • 6Oakley John P, Satherley Brenda L.Improvlng image quality in poor visibility conditions using a physical model for contrast degrsdation [J]. IEEE Transactions on Image Processing, 1998,7(2):167-179.
  • 7Narasimhan Srinivasa G, Nayar Shree K. Removing weather effects from monochrome images [A]. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Reeognition[C], Kauai, Hawaii, USA, 2001,186 -193.
  • 8Kim Tae Keun, Paik Joon Ki, Kang Bong Soon. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering [J]. IEEE Transactions on Consumer Electronics, 1998,44(1): 82-86.
  • 9Kim Joung-Youn, Kim Lee-Sup, Hwang Seung-Ho. An advaneed eontrast enhaneement using partially overlapped subblock histogram equalization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001,11 (4) :475-484.
  • 10Tan R T. Visibility in bad weather from a single image [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. New York, USA: IEEE,2008 : 1- 8.

共引文献310

同被引文献27

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部