期刊文献+

一种用于软测量建模的增量学习集成算法 被引量:8

An incremental learning ensemble algorithm for soft sensor modeling
原文传递
导出
摘要 针对软测量模型在实际应用中遇到的问题,结合Ada Boost集成学习思想,提出适用于软测量回归的集成学习算法,以提高传统软测量模型的精度.为了克服模型更新技术对软测量实际应用的制约,将增量学习机制加入软测量集成建模中,使软测量模型具有在线实时更新的增量学习能力.对浆纱过程使用新方法建立上浆率软测量模型,并使用实际生产数据对模型进行检验,检验结果表明,该模型具有很好的预测精度,并能够较好地实现在线更新. Aiming at the characters and problems of the soft sensor, a soft sensor modelling method for the soft sensor regression problem based on the ensemble learning algorithm is proposed to improve the accuracy of the soft sensor. According to the shortages of soft sensor update in practical application, an incremental learning idea is added to the proposed ensemble algorithm for soft sensor modelling. The method is used to establish the soft sensor model of sizing in sizing production. The product data is used to test the model. The results show that the proposed soft sensor model can improve the prediction accuracy and realize online update better.
出处 《控制与决策》 EI CSCD 北大核心 2015年第8期1523-1526,共4页 Control and Decision
基金 国家自然科学基金项目(61403277 61203302) 天津市应用基础与前沿技术研究计划项目(14JCYBJC18900)
关键词 软测量 集成建模 增量学习 极限学习机 上浆率 soft sensor ensemble modelling incremental learning extreme learning machine sizing
  • 相关文献

参考文献9

  • 1Helland K, Berntsen H E, Borgen O S, et al Recursive algorithm for partial least squares regression[J] Chemometrics Intelligent Laboratory Systems, 1992, 14 129-137.
  • 2胥欣,江登表,李勃,陈启美.混合高斯模型运动检测算法优化[J].计算机应用研究,2013,30(7):2190-2194. 被引量:14
  • 3Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. J of Computer and System Sciences, 1997, 55(1): 119-139.
  • 4Drucker H. Improving regressor using boosting techniques[C]. Proc of the 13th Annual Conf on Computational Learning Theory. San Francisco, 1997: 208-219.
  • 5Polikar R, Udpa L, Udpa S. Learn++: An incremental learning algorithm for supervised neural networks[J]. IEEE Trans on Systems, Man and Cybernetics Part C: Applications and Reviews, 2001, 31(4): 497- 508.
  • 6Anita J Patel, Joy S Patel. Ensemble systems and incremental learning[C]. 2013 Int Conf on Intelligent Systems and Signal Proc(ISSP). Gujarat, 2013: 365-368.
  • 7田慧欣,贾玉凤.基于集成多支持向量回归融合的上浆率在线软测量方法[J].纺织学报,2014,35(1):62-66. 被引量:4
  • 8Huang Guangbin, Zhu Qinyu, Siew Chee. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006(70): 489-501.
  • 9Xiao Dong, Wang Jichun, Mao Zhizhong. The research on the modeling method of batch process based on OS-ELM- RMPLS[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 134(15): 118-122.

二级参考文献22

  • 1萧汉滨.国内外新型浆纱机的性能剖析[J].棉纺织技术,2005,33(4):26-31. 被引量:10
  • 2LI Qi, DU Qun, BA Wei. Multiple-input multiple-output soft sensors based on KPCA and MKLS-SVM for quality prediction in atmospheric distillation column [ J 1. International Journal of Innovative Computing, Information and Control, 2012, 8(12): 8215-8230.
  • 3BREIMAN L. Bagging Learning, 1996, 24(2) : predictors [ J ]. Machine 123 - 140.
  • 4DUFFY N, HELMBOLD D. Boosting methods for regression [ J ]. Machine Learning, 2002, 47 ( 2/3 ) : 153 - 200.
  • 5CROUXA C, JOOSSENSA K, LEMMENSB A. Trimmed bagging[ J]. Computational Statistics and Data Analysis, 2006, 52(9): 362-368.
  • 6TOYAMA K,KRUMM J,BRUMITT B. Wallflower:principles and practice of background maintenance[A].[S.l.]:IEEE Press,1999.255-261.
  • 7BRUTZER S,H?FERLIN B,HEIDEMANN G. Evaluation of background subtraction techniques for video surveillance[A].2011.1937-1944.
  • 8BARNICH O,Van DROOGENBROECK M. Vibe:a powerful random technique to estimate the background in video sequences[A].2009.945-948.
  • 9ASSHETON P,HUNTER A. A shape-based voting algorithm for pedestrian detection and tracking[J].Pattern Recognition,2011,(05):1106-1120.
  • 10MADDALENA L,PETROSINO A. A self-organizing approach to background subtraction for visual surveillance applications[J].IEEE Transactions on Image Processing,2008,(07):1168-1177.

共引文献16

同被引文献59

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部