期刊文献+

利用自适应图像块划分的图像噪声强度估计 被引量:5

Image Noise Estimation by Using Adaptive Image Block Division
下载PDF
导出
摘要 传统的基于图像块划分的噪声强度估计方法通常先将图像划分为若干规则矩形图像块,并利用其中平滑的图像块进行噪声强度计算.然而当图像的结构信息比较丰富时,传统的方法往往会出现较大的偏差.为了解决该问题,提出一种基于自适应图像块划分的图像噪声强度估计方法.首先结合图像的空间邻域信息,将含噪图像划分为若干贴合图像局部边缘、纹理等结构信息的自适应图像块;然后根据所划分图像块的统计特性,通过散点图统计法选取出平滑的自适应图像块;最后利用平滑自适应图像块估计图像的噪声强度.实验结果表明,相比于已有的噪声估计方法,该方法在针对不同噪声强度、不同复杂程度的图像时更加准确和稳定. An image was firstly divided into regular rectangle blocks in conventional block division based noise estimation methods, and then the noise intensity was calculated using the homogeneous blocks. However, it always leads to an over-estimation of the noise intensity when dealing with highly textured images. To solve this problem, we proposed a new noise estimation method based on an adaptive image block division algorithm. Firstly, the noisy image was decomposed into adaptive image blocks by using the spatial neighborhood pixels, where the adaptive blocks can adhere to local image structures, such as image edges and textures; then the most homogeneous adaptive blocks were detected with a scatter-plot-based statistical method; finally, the image noise intensity was calculated with the selected homogeneous adaptive blocks. Experimental results demonstrate that the proposed method is more accurate and stable than existing methods when estimating noise from images with various complexities and different noise levels.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第8期1475-1482,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61273251 61401209) 中国博士后科学基金(2014T70525 2013M531364) "十二五"民用航天技术预先研究项目(D040201) 江苏省自然科学基金青年基金(BK20140790) 江苏省普通高校研究生科研创新计划项目(CXZZ13_0211)
关键词 噪声估计 高斯噪声 自适应图像块 空间邻域信息 相似性度量 noise estimation Gaussian noise adaptive image block spatial neighborhood similarity metric
  • 相关文献

参考文献20

  • 1Watanabe Y. Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit[J]. Journal of Biomedical Optics, 2012, 17(5): 050503-1-050503-3.
  • 2刘艳丽,郭延文,王进,彭群生.噪声方差未知的小波域中非局部均值图像去噪[J].计算机辅助设计与图形学学报,2009,21(4):526-532. 被引量:9
  • 3Alpert S, Galun M, Brandt A, et al. Image segmentation by probabilistic bottom-up aggregation and cue integration[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2012, 34(2):315-327.
  • 4Phinyomark A, Limsakul C, Phukpattaranont P. Application of wavelet analysis in EMG feature extraction for pattern classifi- cation[J]. Measurement Science Review, 2011, 11(2):45-52.
  • 5Saez J A, Luengo J, Herrera F. Predicting noise filtering effi- cacy with data complexity measures for nearest neighbor clas- sification[J]. Pattern Recognition, 2013, 46(1 ):355 -364.
  • 6Du Q, Wei W, May D, et al. Noise-adjusted principal component analysis for buried radioactive target detection and classifi- cation[J]. IEEE Transactions on Nuclear Science, 2010, 57(6): 3760-3767.
  • 7Immerker J. Fast noise variance estimation[J]. Computer Vi- sion and Image Understanding, 1996, 64(2): 300-302.
  • 8Comer B R, Narayanan R M, Reichenbach S E. Noise estima- tion in remote sensing imagery using data masking[J]. Interna- tional Journal of Remote Sensing, 2003, 24(4): 689-702.
  • 9Liu W, Lin W S. Additive white Gaussian noise level estima- tion in SVD domain for images[J]. IEEE Transactions on Im- age Processing, 2013, 22(3): 872-883.
  • 10Hashemi M, Beheshti S. Adaptive noise variance estimation in BayesShrink[J]. IEEE Signal Processing Letters, 2010, 17(1): 12-15.

二级参考文献19

  • 1高连如,张兵,张霞,申茜.基于局部标准差的遥感图像噪声评估方法研究[J].遥感学报,2007,11(2):201-208. 被引量:54
  • 2Lindenbaum M, Fischer M, Bruckstein A. On Gabor's contribution to image enhancement [J]. Pattern Recognition, 1994, 27(1): 1-8
  • 3Perona P, Malik J. Scale-space and edge detection using anisotropie diffusion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639
  • 4Huang T S, Yang G J, Tang G Y. A fast two-dimensional median filtering algorithm [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979, 27(1): 13- 18
  • 5Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C]//Proceedings of the 6th International Conference on Computer Vision, Bombay, 1998:839-846
  • 6Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81(3) : 425-455
  • 7Weyrich N, Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising [J]. IEEE Transactions on Image Processing, 1998, 7(1): 82-90
  • 8Jansen M, Bultheel A. Multiple wavelet threshold estimation by generalized cross validation for images with correlated noise [J]. IEEE Transactions on Image Processing, 1999, 8 (7): 947-953
  • 9Buades A, Coll B, Morel J M. A non-local algorithm for image denoising [C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005:60-65
  • 10Mahmoudi M, Sapiro G. Fast image and video denoising via nonlocal means of similar neighborhoods[J]. IEEE Signal Processing Letters, 2005, 12(12): 839-842

共引文献29

同被引文献28

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部