期刊文献+

Li_4SiO_4高温吸收CO_2性能测试及动力学行为研究

Property and Kinetics of Absorbing CO_2 with Li_4SiO_4 Material
下载PDF
导出
摘要 采用高温固相反应法,制备出在高温450-750℃之间可直接可逆吸收CO2的Li4SiO4材料,借助扫描电子显微镜(SEM)及X射线衍射分析仪(XRD)分别对材料进行了表面形貌研究及结构特征分析,采用热重分析仪(TG)研究了材料吸收CO2的性能,并采用双指数模型对材料定温吸附CO2的行为进行了模拟。试验结果表明,采用固相法于700℃煅烧6 h即可获得性能优异的Li4SiO4材料,材料对CO2的吸附过程主要受锂离子扩散速率的影响,在650℃材料具有较好的吸附性能,恒温110 min即可获得31%左右的吸收容量。 Lithium silicate as CO2 absorbent at 450-750 ℃ was prepared by high-temperature solid-state reaction. The microscopic morphology of absorbents was viewed by a scanning electron microscopy( SEM),while the crystal structure of the lithium silicate absorbents was studied by X-ray diffraction( XRD) patterns. The CO2-absorption abilities were measured with a thermogravimetric analyzer( TG) and the isothermal study data were fitted according to a double exponential model. The results showed that Li4SiO4prepared at 700 ℃ for 6 h had good absorption ability,and the lithium diffusion process was the limiting step in the adsorption process. Meanwhile,it was found that Li4SiO4 heated at 650 ℃ had better absorption ability and the CO2 absorption capacity reached 31% after 110 min.
出处 《硅酸盐通报》 CAS CSCD 北大核心 2015年第7期2057-2061,2067,共6页 Bulletin of the Chinese Ceramic Society
关键词 硅酸锂 吸收 CO2 动力学 lithium silicate absorption carbon dioxide kinetics
  • 相关文献

参考文献25

  • 1Bermfidez J M,Ruisdnchez E, Arenillas A,et al. New concept for energy storage: microwave-induced carbon gasification with C02 [ J]. EnergyConversion and Management ^2014 ^7S :559-564.
  • 2Liu J,Gao S,Jiang X,et al. NO emission characteristics of superfine pulverized coal combustion in the 02/002 atmosphere[ J] . Energy Conversionand Management,2014,77:349-355.
  • 3Gao Shasha,Wang Yanbin,Jia Lilong,Wang Hongjie,Yuan Jun,Wang Xianghao.CO_2 –H_2O–coal interaction of CO_2 storage in coal beds[J].International Journal of Mining Science and Technology,2013,23(4):519-523. 被引量:2
  • 4Bit^>erg Viklund S,Johansson MT. Technologies for utilization of industrial excess heat: potentials for enei^y recovery and C02 emission reduction[J]. Energy Conversion and Management,2014,77 :369-379.
  • 5Ge Y T, Tassou S A. Control optimizations for heat recovery from C02 refrigeration systems in supermarket [ J ]. Energy Conversion andManagement ,2014,78 :245-252.
  • 6Stolaroff J K,Lowry G V,Keith D W. Using CaO- and MgO-rich industrial waste streams for carbon sequestration [ J] . Energy Conversion andManagement,2005,46(5) :687-699.
  • 7Wang X, Alvarado V, Swoboda-Colberg N, et al. Reactivity of dolomite in water-saturated supercritical carbon dioxide: significance for carfjoncapture and storage and for enhanced oil and gas recovery[ J]. Energy Conversion and Management,2013,65:564-573.
  • 8Hongqun Yang,Zhenghe Xu,Maohong Fan,Rajender Gupta,Rachid B Slimane,Alan E Bland,Ian Wright.Progress in carbon dioxide separation and capture: A review[J].Journal of Environmental Sciences,2008,20(1):14-27. 被引量:100
  • 9Pennline H W,Luebke D R,Jones K L,et al. Progress in carbon dioxide capture and separation research for gasification-based power generationpoint sources"]. Fuel Processing Technology , 89(9) :897-907.
  • 10Chen H, Zhao C. Development of a CaO-based sorbent with improved cyclic stability for C02 capture in pressurized carbonation [ J ]. ChemicalEngineering Journalt20\ \ ,171( 1 ) : 197-205.

二级参考文献122

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部